OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 33 — Nov. 20, 1997
  • pp: 8670–8684

Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption

Howard R. Gordon, Tao Du, and Tianming Zhang  »View Author Affiliations

Applied Optics, Vol. 36, Issue 33, pp. 8670-8684 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (508 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Current atmospheric correction and aerosol retrieval algorithms for ocean color sensors use measurements of the top-of-the-atmosphere reflectance in the near infrared, where the contribution from the ocean is known for case 1 waters, to assess the aerosol optical properties. Such measurements are incapable of distinguishing between weakly and strongly absorbing aerosols, and the atmospheric correction and aerosol retrieval algorithms fail if the incorrect absorption properties of the aerosol are assumed. We present an algorithm that appears promising for the retrieval of in-water biophysical properties and aerosol optical properties in atmospheres containing both weakly and strongly absorbing aerosols. By using the entire spectrum available to most ocean color instruments (412–865 nm), we simultaneously recover the ocean’s bio-optical properties and a set of aerosol models that best describes the aerosol optical properties. The algorithm is applied to simulated situations that are likely to occur off the U.S. East Coast in summer when the aerosols could be of the locally generated weakly absorbing Maritime type or of the pollution-generated strongly absorbing urban-type transported over the ocean by the winds. The simulations show that the algorithm behaves well in an atmosphere with either weakly or strongly absorbing aerosol. The algorithm successfully identifies absorbing aerosols and provides close values for the aerosol optical thickness. It also provides excellent retrievals of the ocean bio-optical properties. The algorithm uses a bio-optical model of case 1 waters and a set of aerosol models for its operation. The relevant parameters of both the ocean and atmosphere are systematically varied to find the best (in a rms sense) fit to the measured top-of-the-atmosphere spectral reflectance. Examples are provided that show the algorithm’s performance in the presence of errors, e.g., error in the contribution from whitecaps and error in radiometric calibration.

© 1997 Optical Society of America

Original Manuscript: April 1, 1997
Revised Manuscript: June 16, 1997
Published: November 20, 1997

Howard R. Gordon, Tao Du, and Tianming Zhang, "Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption," Appl. Opt. 36, 8670-8684 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Y. E. Sayed, B. Strum, R. C. Wrigley, C. S. Yentsch, “Nimbus 7 coastal zone color scanner: system description and initial imagery,” Science 210, 60–63 (1980). [CrossRef] [PubMed]
  2. H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980). [CrossRef] [PubMed]
  3. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, C. R. McClain, “SeaWiFS Technical Report Series: Volume 1, An Overview of SeaWiFS and Ocean Color,” (NASA, Greenbelt, Md., 1992).
  4. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Geosci. Remote Sens. 27, 145–152 (1989). [CrossRef]
  5. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: a Review (Springer-Verlag, New York, 1983). [CrossRef]
  6. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983). [CrossRef] [PubMed]
  7. H. R. Gordon, “Removal of atmospheric effects from satellite imagery of the oceans,” Appl. Opt. 17, 1631–1636 (1978). [CrossRef] [PubMed]
  8. H. R. Gordon, D. K. Clark, “Atmospheric effects in the remote sensing of phytoplankton pigments,” Boundary Layer Meteorol. 18, 299–313 (1980). [CrossRef]
  9. H. R. Gordon, J. W. Brown, R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27, 862–871 (1988). [CrossRef] [PubMed]
  10. R. H. Evans, H. R. Gordon, “CZCS ‘system calibration:’ a retrospective examination,” J. Geophys. Res. 99, 7293–7307 (1994). [CrossRef]
  11. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWIFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994). [CrossRef] [PubMed]
  12. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102D, 17,081–17,106 (1997).
  13. G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols—Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).
  14. T. Nakajima, M. Tanaka, M. Yamano, M. Shiobara, K. Arao, Y. Nakanishi, “Aerosol optical characteristics in the yellow sand events observed in May 1982 at Nagasaki—Part II: models,” J. Meteorol. Soc. Jpn. 67, 279–291 (1989).
  15. R. W. Young, K. L. Carder, P. R. Betzer, D. K. Costello, R. A. Duce, G. R. Ditullio, N. W. Tindale, E. A. Laws, M. Uematsu, J. T. Merrill, R. A. Feeley, “Atmospheric iron inputs and primary productivity: phytoplankton responses in the North Pacific,” Global Biogeochem. Cycles 5, 119–134 (1991). [CrossRef]
  16. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992). [CrossRef] [PubMed]
  17. Y. J. Kaufman, “Remote sensing of direct and indirect aerosol forcing,” in Aerosol Forcing of Climate, R. H. Charlson, J. Heintzenberg, eds. (Wiley, New York, 1995), pp. 297–332.
  18. M. Griggs, “Measurements of the aerosol optical thickness over water using ERTS-1 data,” J. Air Pollut. Control. Assoc. 25, 622–626 (1975). [CrossRef] [PubMed]
  19. Y. Mekler, H. Quenzel, G. Ohring, I. Marcus, “Relative atmospheric aerosol content from Erts observations,” J. Geophys. Res. 82, 967–970 (1977). [CrossRef]
  20. R. S. Fraser, “Satellite measurement of mass of Sahara dust in the atmosphere,” Appl. Opt. 15, 2471–2479 (1976). [CrossRef] [PubMed]
  21. P. Koepke, H. Quenzel, “Turbidity of the atmosphere determined from satellite: calculation of optimum viewing geometry,” J. Geophys. Res. 84, 7847–7856 (1979). [CrossRef]
  22. P. Koepke, H. Quenzel, “Turbidity of the atmosphere determined from satellite: calculation of optimum wavelength,” J. Geophys. Res. 86, 9801–9805 (1981). [CrossRef]
  23. P. A. Durkee, D. R. Jensen, E. E. Hindman, T. H. V. Haar, “The relationship between marine aerosol particles and satellite-detected radiance,” J. Geophys. Res. 91, 4063–4072 (1986). [CrossRef]
  24. C. R. N. Rao, L. L. Stowe, E. P. McClain, J. Sapper, “Development and application of aerosol remote sensing with AVHRR data from the NOAA satellites,” in Aerosols and Climate, P. Hobbs, M. P. McCormick, eds. (Deepak, Hampton, Va., 1988), pp. 69–80.
  25. J. R. Herman, P. K. Bhartia, O Torres, C Hsu, C Seftor, “Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data,” J. Geophys. Res. 102D, 16,911–16,922 (1997).
  26. A. Bricaud, A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery: use of a reflectance model,” Oceanolog. Acta 7, 33–50 (1987).
  27. J.-M. André, A. Morel, “Atmospheric corrections and interpretation of marine radiances in CZCS imagery, revisited,” Oceanolog. Acta 14, 3–22 (1991).
  28. P. E. Land, J. D. Haigh, “Atmospheric correction over case 2 waters with an iterative fitting algorithm,” Appl. Opt. 35, 5443–5451 (1996). [CrossRef] [PubMed]
  29. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  30. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
  31. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977). [CrossRef]
  32. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991). [CrossRef] [PubMed]
  33. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993). [CrossRef] [PubMed]
  34. A Morel, K. J. Voss, B Gentili, “Bidirectional reflectance of oceanic waters: a comparison of modeled and measured upward radiance fields,” J. Geophys. Res. 100, 13,143–13,150 (1995).
  35. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote sensing problem,” Appl. Opt. 35, 4850–4862 (1996). [CrossRef] [PubMed]
  36. D. Tanre, M. Herman, P. Y. Deschamps, A. de Leffe, “Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties,” Appl. Opt. 18, 3587–3594 (1979). [CrossRef] [PubMed]
  37. H. Yang, H. R. Gordon, “Remote sensing of ocean color: assessment of the water-leaving radiance bidirectional effects on the atmospheric diffuse transmittance,” Appl. Opt. 36, 7887–7897 (1997). [CrossRef]
  38. M. Wang, H. R. Gordon, “Estimating aerosol optical properties over the oceans with the multiangle imaging spectroradiometer: some preliminary studies,” Appl. Opt. 33, 4042–4057 (1994). [CrossRef] [PubMed]
  39. M. Wang, H. R. Gordon, “Estimation of aerosol columnar size distribution and optical thickness from the angular distribution of radiance exiting the atmosphere: simulations,” Appl. Opt. 34, 6989–7001 (1995). [CrossRef] [PubMed]
  40. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” , 1979 (Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass.).
  41. F. X. Kenizys, E. P. Shettle, W. O. Gallery, J. H. Chetwynd, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the lowtran 6 model,” , 1983 (Air Force Geophysics Laboratory, Hanscomb Air Force Base, Mass.)
  42. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in fortran (Cambridge U. Press, Cambridge, England, 1992).
  43. H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of SeaWIFS,” Appl. Opt. 33, 7754–7763 (1994). [CrossRef] [PubMed]
  44. H. R. Gordon, “Calibration requirements and methodology for remote sensors viewing the oceans in the visible,” Remote Sensing Environ. 22, 103–126 (1987). [CrossRef]
  45. H. R. Gordon, “In-orbit calibration strategy for vicarious calibration of ocean color sensors,” Remote Sens. Environ. (to be published).
  46. P. Koepke, “Effective reflectance of oceanic whitecaps,” Appl. Opt. 23, 1816–1824 (1984). [CrossRef] [PubMed]
  47. R Frouin, M Schwindling, P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near-infrared: in-situ measurements and implications for remote sensing of ocean color and aerosols,” J. Geophys. Res. 101, 14,361–14,371 (1996).
  48. R. B. Husar, L. L. Stowe, J. M. Prospero, “Satellite sensing of tropospheric aerosols over the oceans with NOAA AVHRR,” J. Geophys. Res. 102D, 16,889–16,909 (1997).
  49. A Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters),” J. Geophys. Res. 93, 10,749–10,768 (1988).
  50. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, “Method to derive ocean absorption coefficients from remote sensing reflectance,” Appl. Opt. 35, 453–462 (1996). [CrossRef] [PubMed]
  51. M. Wang, H. R. Gordon, “Radiance reflected from the ocean-atmosphere system: synthesis from individual components of the aerosol size distribution,” Appl. Opt. 33, 7088–7095 (1994). [CrossRef] [PubMed]
  52. W. A. Abdou, J. V. Martonchik, R. A. Kahn, R. A. West, D. J. Diner, “A modified linear-mixing method for calculating atmospheric path radiances of aerosol mixtures,” J. Geophys. Res. 102D, 16,883–16,888 (1997).
  53. D. J. Diner, C. J. Bruegge, J. V. Martonchik, T. P. Ackerman, R. Davies, S. A. W. Gerstl, H. R. Gordon, P. J. Sellers, J. Clark, J. A. Daniels, E. D. Danielson, V. G. Duval, K. P. Klaasen, G. W. L. A. D. I. Nakamoto, R. Pagano, T. H. Reilly, “MISR: a multi-angle imaging spectroradiometer for geophysical and climatological research from EOS,” IEEE Trans. Geosci. Remote Sensing 27, 200–214 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited