OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 33 — Nov. 20, 1997
  • pp: 8729–8737

Collection of emission from an oscillating dipole inside a sphere: analytical integration over a circular aperture

J. David Pendleton and Steven C. Hill  »View Author Affiliations


Applied Optics, Vol. 36, Issue 33, pp. 8729-8737 (1997)
http://dx.doi.org/10.1364/AO.36.008729


View Full Text Article

Enhanced HTML    Acrobat PDF (496 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a method for integrating analytically, over a circular aperture, the emission from an oscillating dipole inside a dielectric sphere. The model is useful for investigating fluorescence, Raman, or other emission from molecules inside of spherical particles or droplets. The analysis is performed for two cases: (a) the dipole emits from a fixed orientation, and (b) the dipole emits from all orientations and the collected energy is summed. This second case models the collection of emission from a molecule that is excited repeatedly; after each excitation it rotates to a random orientation before emitting. These results are applicable to single-molecule detection techniques employing microdroplets and to other techniques for characterizing microparticles with luminescence or inelastic scattering.

© 1997 Optical Society of America

History
Original Manuscript: February 24, 1997
Revised Manuscript: June 16, 1997
Published: November 20, 1997

Citation
J. David Pendleton and Steven C. Hill, "Collection of emission from an oscillating dipole inside a sphere: analytical integration over a circular aperture," Appl. Opt. 36, 8729-8737 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-33-8729


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Detecting single molecules in liquids,” Anal. Chem. 67, 418A–423A (1995). [CrossRef]
  2. M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Detection of single Rhodamine 6G molecules in levitated microdroplets,” Anal. Chem. 65, 2360–2365 (1993). [CrossRef]
  3. W. B. Whitten, J. M. Ramsey, “Single-molecule detection limits in levitated microdroplets,” Anal. Chem. 63, 1027–1031 (1991). [CrossRef]
  4. W. B. Whitten, J. M. Ramsey, “Photocount probability distributions for single fluorescent molecules,” Appl. Spectrosc. 46, 1587–1589 (1992). [CrossRef]
  5. K. C. Ng, W. H. Whitten, S. Arnold, J. M. Ramsey, “Digital chemical analysis of dilute microdroplets,” Anal. Chem. 64, 2914–2919 (1992). [CrossRef]
  6. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S Arnold, “Molecular fluorescence in a microcavity: solvation dynamics and single molecule detection,” in Optical Processes in Microcavities, in R. K. Chang, A. J. Campillo, eds., (World Scientific, Singapore, 1996), pp. 135–165. [CrossRef]
  7. R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23, 653–664 (1995). [CrossRef]
  8. G. Chen, P. Nachman, R. G. Pinnick, S. C. Hill, R. K. Chang, “Conditional-firing aerosol-fluorescence spectrum analyzer for individual airborne particles with pulsed 266-nm laser excitation,” Opt. Lett. 21, 1307–1309 (1996). [CrossRef] [PubMed]
  9. M. F. Buehler, T. M. Allen, E. J. Davis, “Microparticle Raman spectroscopy of multicomponent aerosols,” J. Colloid Interface Sci. 146, 79–89 (1991). [CrossRef]
  10. J.-Z. Zhang, G Chen, R. K. Chang, “Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid droplet: input laser linewidth effects,” J. Opt. Soc. Am. B7, 108–115 (1990); J. C. Swindal, D. H. Leach, R. K. Chang, K. Young, “Precession of morphology-dependent resonances in nonspherical liquid droplets,” Opt. Lett.18, 191–193 (1993). For other examples, see the review chapter by S. C. Hill, R. K. Chang, “Nonlinear optics in droplets,” in Studies in Classical and Quantum Nonlinear Optics, O. Keller, ed. (Nova Science, Commack, N.Y., 1995), pp. 171–242.
  11. S. D. Druger, S. Arnold, L. M. Folan, “Theory of enhanced energy transfer between molecules embedded in spherical dielectric particles,” J. Chem. Phys. 87, 2649–2659 (1987). [CrossRef]
  12. L. Folan, S. Arnold, “Determination of molecular orientation at the surface of an aerosol particle by morphology-dependent photoselection,” Opt. Lett. 13, 1–3 (1988). [PubMed]
  13. M. D. Barnes, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, S. Arnold, S. Holler, “Fluorescence of oriented molecules in a microcavity,” Phys. Rev. Lett. 76, 3931–3934 (1996). [CrossRef] [PubMed]
  14. H.-B. Lin, J. D. Eversole, A. J. Campillo, “Cavity-modified spontaneous emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992). [CrossRef] [PubMed]
  15. M. D. Barnes, W. B. Whitten, S. Arnold, J. M. Ramsey, “Homogeneous linewidths of Rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992). [CrossRef]
  16. M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Enhanced fluorescence yields through cavity-QED effects in microdroplets,” J. Opt. Soc. Am. B 11, 1297–1304 (1994). [CrossRef]
  17. B. V. Bronk, M. J. Smith, S. Arnold, “Photon-correlation spectroscopy for small spherical inclusions in a micrometer-sized electrodynamically levitated droplet,” Opt. Lett. 18, 93–95 (1993). [CrossRef] [PubMed]
  18. D. Ngo, R. G. Pinnick, “Suppression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A 11, 1352–1359 (1994). [CrossRef]
  19. S. C. Hill, H. I. Saleheen, K. A. Fuller, “Volume current method for modeling light scattering by inhomogeneously perturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995). [CrossRef]
  20. H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A 13, 396–404 (1976). [CrossRef]
  21. S. Druger, P. J. McNulty, “Radiation patterns of fluorescence from molecules embedded in small particles: general case,” Appl. Opt. 22, 75–82 (1983). [CrossRef] [PubMed]
  22. S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency,” Appl. Opt. 35, 6278–6288 (1996). [CrossRef] [PubMed]
  23. S. C. Hill, M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Collection of fluorescence from single molecules in microspheres: effects of illumination geometry,” Appl. Opt. 36, 4425–4437 (1997). [CrossRef] [PubMed]
  24. D.-S. Wang, M. Kerker, H. Chew, “Raman and fluorescent scattering by molecules embedded in dielectric spheroids,” Appl. Opt. 19, 2315–2328 (1980). [CrossRef] [PubMed]
  25. P. Chylek, “Mie scattering into the backward hemisphere,” J. Opt. Soc. Am. 63, 1467–1471 (1973). [CrossRef]
  26. W. J. Wiscombe, P. Chylek, “Mie scattering between any two angles,” J. Opt. Soc. Am. 67, 572–573 (1977). [CrossRef]
  27. W. P. Chu, D. M. Robinson, “Scattering from a moving spherical particle by two crossed coherent plane waves,” Appl. Opt. 16, 619–626 (1977). [CrossRef] [PubMed]
  28. J. D. Pendleton, “Mie scattering into solid angles,” J. Opt. Soc. Am. 72, 1029–1033 (1982). [CrossRef]
  29. J. D. Pendleton, “A generalized Mie theory solution and its application to particle sizing interferometry,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn.1982), p. 90.
  30. J. Y. Son, W. M. Farmer, T. V. Giel, “New optical geometry for the particle sizing interferometer,” Appl. Opt. 25, 4332–4337 (1986). [CrossRef] [PubMed]
  31. J. Y. Son, “Multiple methods for obtaining particle sizing distribution with a particle sizing interferometer,” Ph.D. dissertation (University of Tennessee, Knoxville, Tenn.1985).
  32. S. C. Hill, G Videen, J. D. Pendleton, “Reciprocity method for obtaining the far fields generated by a source inside or near a microparticle,” J. Opt. Soc. Am. B14, 2522–2529 (1997), B8401.
  33. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), pp. 82–101.
  34. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  35. J. P. Barton, D. R. Alexander, “Electromagnetic fields for an irregularly shaped, near-spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 69, 7973–7986 (1991). [CrossRef]
  36. E. E. M. Khaled, S. C. Hill, P. W. Barber, “Scattered and internal intensity of a sphere illuminated with a Gaussian beam,” IEEE Trans. Antennas Propag. 41, 295–303 (1993). [CrossRef]
  37. C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd ed. (IEEE Press, Piscataway, N.J., 1994), Chap. 10.
  38. The Green function shown here can be obtained following the approach of Tai in Ref. 37. Equation (1) differs from Tai’s in that it employs the complex vector spherical harmonics (see Appendix B).
  39. G. Videen, D. Ngo, P. Chylek, R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922–928 (1995). [CrossRef]
  40. G Arfken, Mathematical Methods for Physicists, 3rd. ed. (Academic, San Diego, 1985), pp. 198–200, 253, 678.
  41. S. L. Belousov, Tables of Normalized Associated Legendre Polynomials (Pergamon, New York, 1962).
  42. D.-S. Wang, P. W. Barber, “Scattering by inhomogeneous nonspherical objects,” Appl. Opt. 18, 1702–1705 (1979). [CrossRef]
  43. K. A. Fuller, “Morphology-dependent resonances in eccentrically stratified spheres,” Opt. Lett. 19, 1272–1274 (1994). [CrossRef] [PubMed]
  44. F. Borghese, P. Denti, R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484–493 (1994). [CrossRef] [PubMed]
  45. J. A. Stratton, Electromagnetic Theory (McGraw–Hill, New York, 1941), p. 401.
  46. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), pp. 34, 124.
  47. J. D. Jackson, Classical Electrodynamics, 2nd. ed. (Wiley, New York, 1975), p. 746.
  48. M. Abramowitz, I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1964).
  49. I. S. Gradshteyn, I. M. Ryzhik, eds., Table of Integrals, Series, and Products (Academic, New York, 1980), pp. 1005, 1008.
  50. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. I. Theory for external aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited