OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 33 — Nov. 20, 1997
  • pp: 8785–8790

Integral light-scattering and absorption characteristics of large, nonspherical particles

Alexander A. Kokhanovsky and Andreas Macke  »View Author Affiliations


Applied Optics, Vol. 36, Issue 33, pp. 8785-8790 (1997)
http://dx.doi.org/10.1364/AO.36.008785


View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We obtain and analyze simple analytical formulas for asymmetry parameters and absorption cross sections of large, nonspherical particles. The formulas are based on the asymptotic properties of these characteristics at strong and weak absorption of radiation inside particles. The absorption cross section depends on parameter ϕ, which determines the value of the light-absorption cross section for weakly absorbing particles. It is larger for nonspherical scatterers. The asymmetry parameter depends on two parameters. The first is the asymmetry parameter g0 of a nonspherical, transparent particle with the same shape as an absorbing one. The second parameter, β, determines the strength of the influence of light absorption on the value of the asymmetry parameter. Parameter β is larger for nonspherical particles. One can find these three parameters (ϕ, g0, and β) using a ray-tracing code (RTC) for nonabsorbing and weakly absorbing particles. The RTC can then be used to check the accuracy of the equations at any absorption for hexagonal cylinders and spheroids. It is found that the error of computing the absorption cross section and 1 − g (g is the asymmetry parameter) is less than 20% at the refractive index of particles n = 1.333. Values for asymmetry parameters of large, nonabsorbing, spheroidal particles with different aspect ratios are tabulated for the first time to our knowledge. They do not depend on the size of particles and can serve as an independent check of the accuracy of T-matrix codes for large parameters.

© 1997 Optical Society of America

History
Original Manuscript: June 20, 1996
Revised Manuscript: March 11, 1997
Published: November 20, 1997

Citation
Alexander A. Kokhanovsky and Andreas Macke, "Integral light-scattering and absorption characteristics of large, nonspherical particles," Appl. Opt. 36, 8785-8790 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-33-8785


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Shifrin, “Scattering of light in a turbid medium,” (NASA, Washington, D.C., 1967).
  2. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  3. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  4. M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  5. A. Macke, J. Mueller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996). [CrossRef]
  6. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989). [CrossRef]
  7. Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992). [CrossRef]
  8. Y. Takano, K. N. Liou, “Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818–837 (1995). [CrossRef]
  9. J. L. Peltoniemi, K. Lumme, K. Muinonen, W. M. Irvine, “Scattering of light by stochastically rough particles,” Appl. Opt. 28, 4088–4095 (1989). [CrossRef] [PubMed]
  10. A. A. Kokhanovsky, E. P. Zege, “Local optical parameters of spherical polydispersions: simple approximations,” Appl. Opt. 34, 5513–5519 (1995). [CrossRef] [PubMed]
  11. M. I. Mishchenko, L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994). [CrossRef]
  12. A. Macke, M. I. Mischenko, K. Muinonen, B. E. Carlson, “Scattering of light by large nonspherical particles: ray-tracing approximation versus T-matrix method,” Opt. Lett. 20, 1934–1936 (1995). [CrossRef] [PubMed]
  13. H. C. van de Hulst, Multiple Light Scattering, Tables, Formulas, and Applications (Academic, New York, 1980), Vols. 1 and 2.
  14. J. Lenoble, ed., Radiative transfer in scattering and absorbing atmospheres: standard computational procedures, (A. Deepak, Hampton, Va., 1985), p. 65.
  15. K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994). [CrossRef]
  16. M. I. Mishchenko, L. D. Travis, “Light scattering by polydisperse, rotationally symmetric nonspherical particles: linear polarization,” J. Quant. Spectrosc. Radiat. Transfer 51, 759–778 (1994). [CrossRef]
  17. A. Macke, M. I. Mischenko, “Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles,” Appl. Opt. 35, 4291–4296 (1996). [CrossRef] [PubMed]
  18. F. D. Bryant, P. Latimer, “Optical efficiencies of large particles of arbitrary shape and orientation,” J. Colloid Interface Sci. 30, 291–304 (1969). [CrossRef]
  19. D. L. Mitchel, W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on cloud morphology,” J. Atmos. Sci. 51, 817–832 (1994). [CrossRef]
  20. V. Vouk, “Projected area of convex bodies,” Nature (London) 162, 330–331 (1948). [CrossRef]
  21. D. J. Brown, P. J. Felton, “Direct measurement of concentration and size for particles of different shapes using laser light diffraction,” Chem. Eng. Res. Des. 63, 125–132 (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited