OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 33 — Nov. 20, 1997
  • pp: 8806–8814

Spatially resolved determination of atomic particle densities and line shapes within an arc plasma by tomographic resonance interferometry

Georg Pretzler, Christian Haas, Theo Neger, and Helmut Jäger  »View Author Affiliations


Applied Optics, Vol. 36, Issue 33, pp. 8806-8814 (1997)
http://dx.doi.org/10.1364/AO.36.008806


View Full Text Article

Acrobat PDF (574 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The particle density of ground-state chromium atoms within one cross section of an arc plasma was measured spatially resolved, and the spatial distribution of the line shape of the chromium resonance line at 427.48 nm was partly determined. The measurements were performed with a newly developed setup that combines the methods of resonance interferometry and refractive tomography. The wavelength of a dye laser was scanned over the investigated transition, and the refractive index was measured spatially and spectrally resolved by use of tomography. For each spatial point the particle density and the local line shape were calculated from the measured spectral refractivity distribution by the method of resonance interferometry. We describe the physical principles, the optical arrangement, and the numerical apparatus, and we discuss the results and further possibilities.

© 1997 Optical Society of America

Citation
Georg Pretzler, Christian Haas, Theo Neger, and Helmut Jäger, "Spatially resolved determination of atomic particle densities and line shapes within an arc plasma by tomographic resonance interferometry," Appl. Opt. 36, 8806-8814 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-33-8806


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. T. Herman, Image Reconstruction from Projections (Academic, New York, 1980).
  2. C. D. Maldonado and H. N. Olsen, “New method for obtaining emission coefficients from emitted spectral intensities. Part II—Asymmetrical sources,” J. Opt. Soc. Am. 56, 1305–1313 (1966).
  3. K. E. Bennett, G. W. Faris, and R. L. Byer, “Experimental optical fan beam tomography,” Appl. Opt. 23, 2678–2685 (1984).
  4. R. Koslover and R. McWilliams, “Measurement of multidimensional ion velocity distributions by optical tomography,” Rev. Sci. Instrum. 57, 2441–2448 (1986).
  5. G. W. Faris and R. L. Byer, “Beam-deflection optical tomography of a flame,” Opt. Lett. 12, 155–157 (1987).
  6. J. Woisetschläger, H. Jäger, H. Philipp, G. Pfeifer, and T. Neger, “Tomographic investigation of the particle density distribution of sodium atoms in a glow discharge using heterodyne holographic interferometry,” Phys. Lett. A 152, 42–46 (1991).
  7. T. Neger, “Optical tomography by spectral interferometry,” J. Phys. D 28, 47–54 (1995).
  8. M. Ulbel and G. Pretzler, “White-light interferometric tomography for particle density determination in a free-burning arc,” J. Phys. D (to be published).
  9. G. Pretzler, “Single-shot tomography by differential interferometry,” Meas. Sci. Technol. 6, 1476–1486 (1995).
  10. G. V. Dreiden, A. N. Zaidel’, G. V. Ostrovskaya, Yu. I. Ostrovskii, N. A. Pobedonostseva, L. V. Tanin, V. N. Filippov, and E. N. Shedova, “Plasma diagnostics by resonant interferometry and holography,” Sov. J. Plasma Phys. 1, 256–267 (1975).
  11. E. Kügler and D. Bershader, “Recent high-resolution resonant refractivity studies of a sodium-seeded flame,” Exp. Fluids 1, 1–9 (1983).
  12. J. E. Millerd, N. J. Brock, M. S. Brown, and P. A. DeBarber, “Real-time resonant holography using bacteriorhodopsin thin films,” Opt. Lett. 20, 626–628 (1995).
  13. A. Thorne, Spectrophysics (Chapman & Hall, London, 1974).
  14. R. W. Ditchburn, Light, 3rd ed. (Academic, London, 1976).
  15. H. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).
  16. A. Unsöld, Physik der Strernatmosphären (Springer-Verlag, Berlin, 1955).
  17. G. Traving, Über die Theorie der Druckverbreiterung der Spektrallinien (Braun, Karlsruhe, Germany, 1960).
  18. H. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974).
  19. C. Haas, G. Pretzler, T. Neger, and H. Jäger, “Determination of particle densities and line profiles in plasmas by resonance interferometry: A feasability study using computer simulated refractivity data,” Z. Naturforsch. A 50, 902–914 (1995).
  20. J. Radon, “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 69, 292 (1917).
  21. A. M. Cormack, “Representation of a function by its line integrals, with some radiological applications,” J. Appl. Phys. 34, 2722–2727 (1963).
  22. G. Hounsfield, “Computerized transverse axial scanning tomography, Part I: Description of the system,” Br. J. Radiol. 46, 1016 (1973).
  23. H. Barrett and W. Swindell, Radiologic Imaging (Academic, New York, 1981).
  24. R. Bracewell, “Strip integration in radio astronomy,” Aust. J. Phys. 9, 198–217 (1956).
  25. R. Snyder and L. Hesselink, “Optical tomography for flow visualization of the density field around a revolving helicopter rotor blade,” Appl. Opt. 23, 3650–3656 (1984).
  26. G. W. Faris and R. L. Byer, “Quantitative optical tomographic imaging of a supersonic jet,” Opt. Lett. 11, 413–415 (1986).
  27. L. Hesselink, “Optical tomography,” in Handbook of Flow Visualization, W.-J. Yang, ed. (Hemisphere, New York, 1989), pp. 307–329.
  28. K. Widmann, G. Pretzler, J. Woisetschläger, H. Philipp, T. Neger, and H. Jäger, “Interferometric determination of the electron density in a high-pressure xenon lamp with a holographic optical element,” Appl. Opt. 35, 5896–5903 (1996).
  29. G. Pretzler, H. Jäger, and T. Neger, “High-accuracy differential interferometry for the investigation of phase objects,” Meas. Sci. Technol. 4, 649–658 (1993).
  30. H. Philipp, T. Neger, H. Jäger, and J. Woisetschläger, “Optical tomography of phase objects by holographic interferometry,” Measurement 10, 170–181 (1992).
  31. G. Pujol and S. Weniger, “Broadening and shift of neutral chromium absorption lines by various perturbing gases,” J. Quant. Spectrosc. Radiat. Transfer 22, 145–153 (1979).
  32. T. Hollander, A. De Leeuw, and E. Ter Horst, “Determination of line broadening parameters for chromium triplet lines (a7S → z7P0 transition) in a C2H2-air flame,” Spectrochim. Acta, Part B 38, 691–695 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited