OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 34 — Dec. 1, 1997
  • pp: 8833–8843

Resonance ionization image detectors: basic characteristics and potential applications

O. I. Matveev, B. W. Smith, and J. D. Winefordner  »View Author Affiliations


Applied Optics, Vol. 36, Issue 34, pp. 8833-8843 (1997)
http://dx.doi.org/10.1364/AO.36.008833


View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A type of spectrally selective imaging optical detector that is based on resonance ionization in an atomic vapor is proposed. It has the potential for improved spatial, spectral, and temporal resolutions compared with those of available techniques. Figures of merit are calculated and compared with those of existing techniques. Several potential applications such as the imaging of moving objects, ultrasonic fields, high-energy particle detection, and optical communications are discussed.

© 1997 Optical Society of America

History
Original Manuscript: February 19, 1997
Revised Manuscript: July 9, 1997
Published: December 1, 1997

Citation
O. I. Matveev, B. W. Smith, and J. D. Winefordner, "Resonance ionization image detectors: basic characteristics and potential applications," Appl. Opt. 36, 8833-8843 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-34-8833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D. Schaeberle, C. G. Karakatsanis, C. J. Lau, P. J. Treado, “Raman chemical imaging: noninvasive visualization of polymer blend architecture,” Anal. Chem. 67, 4316–4321 (1995). [CrossRef]
  2. D. Malonek, A. Grinvald, “Interaction between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implication for functional brain mapping,” Science 272, 551–554 (1996). [CrossRef] [PubMed]
  3. H. R. Morris, C. C. Hoyt, P. Miller, P. J. Treado, “Liquid crystal tunable filter Raman imaging,” Appl. Spectrosc. 50, 805–811 (1996). [CrossRef]
  4. O. I. Matveev, “Atomic resonance spectrometers and filters,” Zh. Prikl. Spektrosk. (USSR) 46, 359–375 (1987).
  5. E. Korevaar, M. Rivers, C. S. Liu, “Imaging atomic line filter for satellite tracking,” in Space Sensing, Communications, and Networking, M. Ross, R. J. Temkin, eds., Proc. SPIE1059, 111–118 (1989). [CrossRef]
  6. J. N. Forkey, N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurement,” AIAA J. 34, 442–448 (1996). [CrossRef]
  7. M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34, 434–441 (1996). [CrossRef]
  8. R. L. McKenzie, “Measurement capabilities of planar Doppler velocimety using pulsed lasers,” in Proceedings of the Thirty-Third Aerospace Sciences Meeting and Exhibit, AIAA paper 95-0297 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995).
  9. N. D. Finkelstein, W. R. Lempert, R. B. Miles, “A narrow passband, imaging, refluorescence filter for non-intrusive flow diagnostics,” in Proceedings of the Nineteenth AIAA Advanced Measurement and Ground Testing Technology Conference, AIAA paper 96-2269 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).
  10. N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Cavity locked, injection seeded, titanium: sapphire laser and application to ultra violet flow diagnostics,” in Proceedings of the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, AIAA paper 96-0177 (American Institute Aeronautics and Astronautics, Washington, D.C., 1996).
  11. H. Chen, C. Y. She, P. Searcy, E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, 1019–1021 (1993). [CrossRef] [PubMed]
  12. B. Yin, T. M. Shay, “Stark anomalous dispersion optical filter for doubled Nd:YLF lasers,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 455–457 (1994). [CrossRef]
  13. L. Chen, L. S. Alvares, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 448–454 (1994). [CrossRef]
  14. H. Hemmati, “Laser communication component technologies: database; status and trends,” in Free-Space Laser Communication Technologies VIII, G. Mecherle, ed., Proc. SPIE2699, 310–314 (1996). [CrossRef]
  15. H. Chen, M. A. White, D. A. Krueger, C. Y. She, “Daytime mesopause temperature measurement with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996). [CrossRef] [PubMed]
  16. H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983). [CrossRef] [PubMed]
  17. B. W. Smith, P. B. Farnsworth, J. D. Winefordner, N. Omenetto, “Experimental demonstration a Raman scattering detector based on laser-enhanced ionization,” Opt. Lett. 15, 823–825 (1990). [CrossRef] [PubMed]
  18. O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a mercury resonance ionization photon detector,” Spectrochim. Acta 51B, 564–567 (1996).
  19. See, for example, “Image intensifiers,” in The Hamamatsu Catalog (Hamamatsu Corp., Bridgewater, N.J., 1996).
  20. O. I. Matveev, L. S. Mordoh, W. L. Clevenger, B. W. Smith, J. D. Winefordner, “Optical emission detection of laser enhanced ionization in a buffer gas,” Appl. Spectrosc. 51, 798–803 (1997). [CrossRef]
  21. O. I. Matveev, W. L. Clevenger, L. S. Mordoh, B. W. Smith, J. D. Winefordner, “Plasma emission in a pulsed electric field after resonance ionization of atoms,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), Vol. 338, pp. 171–173.
  22. S. R. Hunter, “Evaluation of a digital optical ionizing radiation particle track detector,” Nucl. Instrum. Methods A 260, 469–477 (1987). [CrossRef]
  23. J. E. Turner, S. R. Hunter, R. N. Hamm, H. A. Wright, G. S. Hurst, W. A. Gibson, “Digital characterization of recoil charged-particle tracks for neutron measurement,” Nucl. Instrum. Methods B 40/41, 1219–1223 (1989). [CrossRef]
  24. S. R. Hunter, W. A. Gibson, G. S. Hurst, J. E. Turner, R. N. Hamm, H. A. Wright, “Optical imaging of charged particle tracks in a gas,” Radiat. Protection Dosimetry 52, 323–328 (1994).
  25. W. A. Gibson, S. R. Hunter, “Technique for optically imaging charged particle tracks in a gas,” submitted to Rev. Sci. Instrum.
  26. M. Acharecar, P. Gatt, L. Mizerka, “Laser vibration sensor,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 2–11 (1995). [CrossRef]
  27. D. E. Oliver, “Scanning laser vibrometer for dynamic deflection shape characterization of aerospace structures,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 12–22 (1995). [CrossRef]
  28. I. L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968), pp. 206–210.
  29. W. Blue, L. Rolandi, Particle Detection with Drift Chambers (Springer-Verlag, Berlin, 1994) Chaps. 6, 10.
  30. O. I. Matveev, “Stepwise photoionization of atoms as a spectroanalytical method,” Ph.D. dissertation (Moscow State University, Moscow, 1979).
  31. H. O. Behrens, G. H. Guthohrlein, “High resolution optogalvanic spectroscopy as a useful tool in the determination of atomic hyperfine parameters and isotopic shifts,” J. Phys. (Paris) 44, 149–168 (1983). [CrossRef]
  32. O. I. Matveev, N. B. Zorov, Yu. Ya. Kuzyakov, “Photon detection after its resonance absorption in a atomic vapor,” J. Anal. Chem. (USSR) 34, 846–855 (1979).
  33. V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, London, 1987), pp. 58, 79, 93, 105, 109.
  34. P. Bisling, C. Weitkamp, H. Zobel, “RIS of mercury for analytical applications,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), pp. 283–286.
  35. J. N. Dodd, W. J. Sandle, O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970). [CrossRef]
  36. G. Magerl, B. P. Oehry, W. Ehrlich-Schupita, Atomic Resonance Narrow Band Filters (Institut für Nachrichtentechnik und Hochfrequenztechnik, Technische Universitat Wien, Vienna, Austria, July1991).
  37. “High performance digital CCD cameras” (Princeton Instruments Catalog, Princeton, N.J., 1996).
  38. B. M. Gentry, C. L. Korb, “Edge technique for high accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994). [CrossRef] [PubMed]
  39. I. Renhorn, C. Karlsson, D. Letalick, M. Millnert, R. Rutgers, “Coherent laser radar for vibrometry: robust design and adaptive signal processing,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 23–30 (1995). [CrossRef]
  40. T. Rochow, P. A. Tucker, Introduction to Microscopy by Means of Light, Electrons, X-Rays, or Acoustics (Plenum, New York, 1994). [CrossRef]
  41. D. M. Pepper, “Commercial laser-based ultrasound systems may benefit automotive producers,” Laser Focus World 32 (June), 77–80 (1996).
  42. G. W. Brooksby, C. M. Penny, “Measurement of ultrasonically modulated scattered light for imaging in turbid media,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 564–570 (1995).
  43. L. Wang, X. Zhao, S. L. Jacques, “Ultrasound modulated optical tomography of dense turbid media,” in Biomedical Sensing, Imaging and Tracking Technologies I, R. A. Liberman, N. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 91–102 (1996). [CrossRef]
  44. L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995). [CrossRef] [PubMed]
  45. A. A. Ganeev, S. E. Sholupov, N. V. Ganeeva, O. I. Matveev, Yu. I. Turkin, G. B. Sveshnikov, “Remote laser detection of mercury atoms in the atmosphere (the method of the resonance fluorescence),” Zh. Prikl. Spektrosk. 53, 899–909 (1990).
  46. J. A. Samson, Technique of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967), p. 37.
  47. R. Haight, “Photoemission with laser generated harmonics tunable to 80 eV,” Appl. Opt. 33, 6445–6448 (1996). [CrossRef]
  48. M. R. Muguira, J. T. Sackos, B. D. Bradley, “Scannerless range imaging with a square wave,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 106–113 (1995). [CrossRef]
  49. J. Brandt, T. D. Steiner, W. J. Mandeville, K. Dinndorf, N. Krasutsky, L. Minor, “Long-range imaging LADAR flight test,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 114–118 (1995). [CrossRef]
  50. W. C. Priedhorsky, R. C. Smith, C. Ho, “Laser ranging and mapping with photon counting detector,” Appl. Opt. 35, 441–452 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited