OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 34 — Dec. 1, 1997
  • pp: 8871–8876

Phase-shifting interferometry and maximum-likelihood estimation theory

Eric W. Rogala and Harrison H. Barrett  »View Author Affiliations


Applied Optics, Vol. 36, Issue 34, pp. 8871-8876 (1997)
http://dx.doi.org/10.1364/AO.36.008871


View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel means of quantitatively assessing the performance of a phase-shifting interferometer is presented. We show how maximum-likelihood estimation theory can be used to estimate the surface-height profile from four noisy phase-shifted measurements. Remarkably, the analytical expression for the maximum-likelihood estimator is identical to the classical four-step algorithm, thereby rooting the traditional method on a statistically sound foundation. Furthermore, a Monte Carlo experiment shows the maximum-likelihood estimator is unbiased and efficient, achieving the theoretical Cramer–Rao lower bound on the variance of the error. This technique is then used to show that the performance is a function of the ratio of the irradiances from each arm, with the optimal performance occurring, not surprisingly, when the irradiances from the two arms are equal.

© 1997 Optical Society of America

History
Original Manuscript: April 28, 1997
Revised Manuscript: August 1, 1997
Published: December 1, 1997

Citation
Eric W. Rogala and Harrison H. Barrett, "Phase-shifting interferometry and maximum-likelihood estimation theory," Appl. Opt. 36, 8871-8876 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-34-8871

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited