OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 34 — Dec. 1, 1997
  • pp: 8982–8986

(1+1)-Dimensional and (2+1)-dimensional waveguides induced by self-focused dark notches and crosses in LiNbO3:Fe crystal

Simin Liu, Guoquan Zhang, Guoyun Tian, Qian Sun, Jingjun Xu, Guangyin Zhang, and Tong Yicheng  »View Author Affiliations


Applied Optics, Vol. 36, Issue 34, pp. 8982-8986 (1997)
http://dx.doi.org/10.1364/AO.36.008982


View Full Text Article

Enhanced HTML    Acrobat PDF (265 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that (1+1)-dimensional and (2+1)-dimensional waveguides can be induced by self-focused dark notches and crosses and stored in LiNbO3:Fe crystals. This is very valuable for information processing and integrated optics. The self-focused dark notches and crosses may be related to the formation of (1+1)-dimensional and (2+1)-dimensional photovoltaic dark spatial solitons in LiNbO3:Fe crystals.

© 1997 Optical Society of America

History
Original Manuscript: November 19, 1996
Revised Manuscript: June 8, 1997
Published: December 1, 1997

Citation
Simin Liu, Guoquan Zhang, Guoyun Tian, Qian Sun, Jingjun Xu, Guangyin Zhang, and Tong Yicheng, "(1+1)-Dimensional and (2+1)-dimensional waveguides induced by self-focused dark notches and crosses in LiNbO3:Fe crystal," Appl. Opt. 36, 8982-8986 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-34-8982


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Y. Chiao, E. Garmire, C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964). [CrossRef]
  2. B. Luther-Davies, Y. Xiaoping, “Waveguides and Y junctions formed in bulk media by using dark spatial solitons,” Opt. Lett. 17, 496–498 (1992). [CrossRef] [PubMed]
  3. B. Luther-Davies, Y. Xiaoping, “Guiding light by light using dark spatial solitons,” Opt. Photon. News 3, 17 (1992). [CrossRef]
  4. M. Segev, B. Crosignani, A. Yariv, B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992). [CrossRef] [PubMed]
  5. B. Crosignani, M. Segev, D. Engin, P. Di Porto, A. Yariv, G. Salamo, “Self-trapping of optical beams in photorefractive media,” J. Opt. Soc. Am. B 10, 446–453 (1993). [CrossRef]
  6. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. J. Sharp, R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993). [CrossRef] [PubMed]
  7. M. Segev, B. Crosignani, P. Di Porto, A. Yariv, G. Duree, G. Salamo, E. Sharp, “Stability of photorefractive spatial solitons,” Opt. Lett. 19, 1296–1298 (1994). [CrossRef] [PubMed]
  8. G. Duree, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, “Dimensionality and size of photorefractive spatial solitons,” Opt. Lett. 19, 1195–1197 (1994). [CrossRef] [PubMed]
  9. M. Segev, A. Yariv, G. Salamo, G. Duree, J. Shultz, B. Crosignani, P. Di Porto, E. Sharp, “Photorefractive spatial solitons,” Opt. Photon, News 4(12) , 9 (1993). [CrossRef]
  10. G. Duree, M. Morin, G. Salamo, M. Segev, B. Crosignani, P. Di Porto, E. Sharp, A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978–1981 (1995). [CrossRef] [PubMed]
  11. M. Segev, G. Salamo, G. Duree, M. Morin, B. Crosignani, P. Di Porto, A. Yariv, “Photorefractive dark and vortex solitons,” Opt. Photon. News 5(12) , 9–10 (1994). [CrossRef]
  12. M. Segev, G. C. Valley, B. Crosignani, P. Di Porto, A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994). [CrossRef] [PubMed]
  13. M. D. Iturbe Castillo, P. A. Marquez Aguilar, J. J. Sanchez-Mondragon, S. Stepanov, V. Vysloukh, “Spatial solitons in photorefractive Bi12TiO20 with drift mechanism of nonlinearity,” Appl. Phys. Lett. 64, 408–410 (1994). [CrossRef]
  14. M.-F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826–827 (1995). [CrossRef]
  15. Z. Chen, M. Mitchell, M.-F. Shih, M. Segev, M. H. Garrett, G. C. Vally, “Steady-state dark photorefractive screening solitons,” Opt. Lett. 21, 629–631 (1996). [CrossRef] [PubMed]
  16. K. Kos, H. Meng, G. Salamo, M.-F. Shih, M. Segev, G. C. Valley, “One-dimensional steady-state photorefractive screening solitons,” Phys. Rev. E 53, R4330–R4333 (1996). [CrossRef]
  17. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994). [CrossRef] [PubMed]
  18. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995). [CrossRef] [PubMed]
  19. M. Segev, G. C. Valley, S. R. Singh, M. I. Carvalho, D. N. Christodoulides, “Vector photorefractive spatial solitons,” Opt. Lett. 20, 1764–1766 (1995). [CrossRef] [PubMed]
  20. D. N. Christodoulides, M. I. Carvalho, “Compression, self-bending, and collapse of Gaussian beams in photorefractive crystals,” Opt. Lett. 19, 1714–1716 (1994). [CrossRef] [PubMed]
  21. M. Morin, G. Duree, G. Salamo, M. Segev, “Waveguides formed by quasi-steady-state photorefractive spatial solitons,” Opt. Lett. 20, 2066–2068 (1995). [CrossRef] [PubMed]
  22. Z. Chen, M. Mitchell, M. Segev, “Steady-state photorefractive soliton-induced Y-junction waveguides and high-order dark spatial solitons,” Opt. Lett. 21, 716–718 (1996). [CrossRef] [PubMed]
  23. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, G. C. Valley, “Y junctions arising from dark-soliton propagation in photovoltaic media,” Opt. Lett. 21, 943–945 (1996). [CrossRef] [PubMed]
  24. M.-F. Shih, M. Segev, G. Salamo, “Circular waveguides induced by two-dimensional bright steady-state photorefractive spatial screening solitons,” Opt. Lett. 21, 931–933 (1996). [CrossRef] [PubMed]
  25. Z. Guoquan, L. Simin, X. Jingjun, Z. Guangyin, S. Qian, “Photorefractive spatial dark-soliton stripes in LiNbO3:Fe crystal and their application,” Chin. Phys. Lett. 13, 101–104 (1996). [CrossRef]
  26. Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett. 78, 2948–2951 (1997). [CrossRef]
  27. G. Zhang, J. Xu, S. Liu, Q. Sun, G. Zhang, Q. Fang, C. Ma, “Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe, Mg crystals,” in Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, F. T. Yu, ed., Proc. SPIE2529, 14–17 (1995). [CrossRef]
  28. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45, 349–392 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited