OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 34 — Dec. 1, 1997
  • pp: 9034–9041

Pressure impulses during microsecond laser ablation

HanQun Shangguan, Lee W. Casperson, and Scott A. Prahl  »View Author Affiliations


Applied Optics, Vol. 36, Issue 34, pp. 9034-9041 (1997)
http://dx.doi.org/10.1364/AO.36.009034


View Full Text Article

Enhanced HTML    Acrobat PDF (310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The collapse of laser-induced cavitation bubbles creates acoustic transients within the surrounding medium and also pressure impulses to the ablation target and light-delivery fiber during microsecond laser ablation. The impulses are investigated here with time-resolved flash photography, and they are found to occur whether or not the light-delivery fiber is in contact with the target. We demonstrate that the impulses depend primarily on the energy stored in the cavitation bubble. They are not directly dependent on the mode of light delivery (contact versus noncontact), and they are also not directly correlated to the other acoustic transients. The pressure impulses do seem to be associated with the bubble-driven jet formation caused by the bubble collapse.

© 1997 Optical Society of America

History
Original Manuscript: April 2, 1997
Revised Manuscript: July 29, 1997
Published: December 1, 1997

Citation
HanQun Shangguan, Lee W. Casperson, and Scott A. Prahl, "Pressure impulses during microsecond laser ablation," Appl. Opt. 36, 9034-9041 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-34-9034


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Vogel, W. Lauterborn, “Acoustic transient generation by laser–produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719–731 (1988). [CrossRef]
  2. K. Rink, G. Delacrétaz, R. P. Salathé, “Fragmentation process of current laser lithotriptors,” Lasers Surg. Med. 16, 134–146 (1995). [CrossRef] [PubMed]
  3. E. D. Jansen, T. Asshauer, M. Frenz, M. Motamedi, G. Delacrétaz, A. J. Welch, “Effect of pulse duration on bubble formation and laser–induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18, 278–293 (1996). [CrossRef]
  4. T. G. van Leeuwen, E. D. Jansen, A. J. Welch, C. Borst, “Excimer laser induced bubble: dimensions, theory, and implications for laser angioplasty,” Lasers Surg. Med. 18, 381–390 (1996). [CrossRef] [PubMed]
  5. K. Gregory, “Laser thrombolysis,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadephia, Pa., 1994), pp. 892–902.
  6. F. Litvack, “Excimer laser coronary angioplasty,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadelphia, Pa., 1994), pp. 841–866.
  7. O. Topaz, “Holmium:YAG coronary angioplasty: the multicenter registry,” in Interventional Cardiology, vol. 2, E. J. Topol, ed. (Saunders, Philadelphia, Pa., 1994), pp. 867–891.
  8. H. Shangguan, L. W. Casperson, S. A. Prahl, “Microsecond laser ablation of thrombus and gelatin under clear liquids: contact versus non-contact,” IEEE J. Selec. Topics Quantum Electron. 2, 818–825 (1996). [CrossRef]
  9. T. Tomaru, H. J. Geschwind, G. Boussignac, F. Lange, S. J. Tahk, “Characteristics of shock waves induced by pulsed lasers and their effects on arterial tissue: comparison of excimer, pulse dye, and holmium YAG lasers,” Am. Heart J. 123, 896–904 (1992). [CrossRef] [PubMed]
  10. H. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt. 35, 3347–3357 (1996). [CrossRef] [PubMed]
  11. R. de la Torre, K. W. Gregory, “Cavitation bubbles and acoustic transients may produce dissections during laser angiogplasty,” J. Am. Coll. Cardiol. 19A, 48 (1992).
  12. T. G. van Leeuwen, L. van Erven, J. H. Meertens, M. Motamedi, M. J. Post, C. Borst, “Original of arterial wall dissections induced by pulsed excimer and mid-infrared laser ablation in the pig,” J. Am. Coll. Cardiol. 19, 1610–1618 (1992). [CrossRef] [PubMed]
  13. T. G. van Leeuwen, J. H. Meertens, E. Velema, M. J. Post, C. Brost, “Intraluminal vapor bubble induced by excimer laser pulse causes microsecond arterial dilation and invagination leading to extensive wall damage in the rabbit,” Circulation 87, 1258–1263 (1993). [CrossRef] [PubMed]
  14. P. A. Tipler, Physics for Scientists and Engineers, vol. 1, (Worth, New York, 1990), p. 210.
  15. Lord Rayleigh, “On the pressure developed during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917). [CrossRef]
  16. A. Vogel, R. Engelhardt, U. Behnle, U. Parlitz, “Minimization of cavitation effects in pulsed laser ablation—illustrated on laser angioplasty,” Appl. Phys. B 62, 173–182 (1996). [CrossRef]
  17. T. B. Benjamin, B. B. Taib, A. T. Ellis, “The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221–240 (1966). [CrossRef]
  18. J. R. Blake, B. B. Taib, G. Doherty, “Transient cavities near boundaries. part 1: rigid boundary,” J. Fluid Mech. 170, 479–497 (1986). [CrossRef]
  19. E. J. Chapyak, R. P. Godwin, S. A. Prahl, H. Shangguan, “A comparison of numerical simulations and laboratory studies of laser thrombolysis,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VII, R. R. Anderson, K. E. Bartels, L. S. Bass, K. W. Gregory, D. M. Harris, H. Lui, R. S. Malek, G. J. Mueller, M. M. Pankratov, A. P. Perlmutter, H. Reidenbach, P. L. Tate, G. M. Watson, eds., Proc. SPIE2970, 23–34 (1997).
  20. A. Vogel, W. Hentschel, J. Holzfuss, W. Lauterborn, “Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers,” Ophthalmology 93, 1259–1269 (1986). [CrossRef] [PubMed]
  21. A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, R. Birngruber, “Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects,” IEEE J. Quantum Electron. 26, 2240–2259 (1990). [CrossRef]
  22. A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited