OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 34 — Dec. 1, 1997
  • pp: 9042–9049

Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time of flight in tissue

Martin Schweiger and Simon R. Arridge  »View Author Affiliations

Applied Optics, Vol. 36, Issue 34, pp. 9042-9049 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reconstruction methods for optical tomographic imaging require the development of models of light transport in highly scattering materials. While the simulation of the full temporal response function arising from a short source light pulse is computationally expensive, there are methods to evaluate efficiently certain transforms of the temporal profile. We previously presented methods to obtain directly the Mellin Transform, which is related to the moments of the temporal intensity distribution; We introduce a similar method to calculate directly the Laplace transform. This method provides an addtional, largely independent measurement type that can be combined with the moments to improve image quality in optical tomography, in particular with respect to the simultaneous reconstruction of absorption and scattering distribution.

© 1997 Optical Society of America

Original Manuscript: December 17, 1996
Revised Manuscript: May 27, 1997
Published: December 1, 1997

Martin Schweiger and Simon R. Arridge, "Direct calculation with a finite-element method of the Laplace transform of the distribution of photon time of flight in tissue," Appl. Opt. 36, 9042-9049 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Hebden, R. A. Kruger, “Transillumination imaging performance: a time of flight imaging system,” Med. Phys. 17, 351–356 (1990). [CrossRef] [PubMed]
  2. A. D. Edwards, J. S. Wyatt, C. E. Richardson, D. T. Delpy, M. Cope, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 2, 770–771 (1988). [CrossRef] [PubMed]
  3. J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. C. Wray, E. O. R. Reynolds, “Quantitation of cerebral blood volume in newborn infants by near infrared spectroscopy,” J. Appl. Physiol. 68, 1086–1091 (1990).
  4. M. Tamura, “Multichannel near-infrared optical imaging of human brain activity,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 8–10.
  5. R. A. de Blasi, M. Cope, C. E. Elwell, F. Safoue, M. Ferrari, “Noninvasive measurement of human forearm oxygen consumption by near-infrared spectroscopy,” J. Appl. Physiol. 67, 20–25 (1993). [CrossRef]
  6. H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using dc data: simulations and experiments,” Phys. Med. Biol. 41, 1483–1498 (1996). [CrossRef] [PubMed]
  7. H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1995). [CrossRef]
  8. K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization,” Appl. Opt. 35, 3447–3458 (1996). [CrossRef] [PubMed]
  9. M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Muller, B. Chance, R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds., (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 513–533.
  10. A. J. Joblin, “Method of calculating the image resolution of a near infrared time-of-flight tissue-imaging system,” Appl. Opt. 35, 752–757 (1996). [CrossRef] [PubMed]
  11. M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993). [CrossRef]
  12. S. R. Arridge, M. Schweiger, “Reconstruction in optical tomography using MRI-based prior knowledge,” in Information Processing in Medical Imaging ’95, Y. Bizais, C. Barillot, R. di Paola, eds., (Springer-Verlag, Berlin, 1995), pp. 77–88.
  13. M. Schweiger, S. R. Arridge, “Optimal data types in optical tomography,” in Lecture Notes in Computer Science, Vol. 1230, J. Duncan, G. Gindi, eds. (Springer-Verlag, Berlin, 1997), pp. 71–84. [CrossRef]
  14. S. R. Arridge, M. Schweiger, “Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method,” Appl. Opt. 34, 2683–2687 (1995). [CrossRef] [PubMed]
  15. S. R. Arridge, M. Schweiger, “The use of multiple data types in time-resolved optical absorption and scattering tomography (toast),” in Mathematical Methods in Medical Imaging II, J. N. Wilson, D. C. Wilson, eds., Proc. SPIE2035, 218–229 (1993). [CrossRef]
  16. B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994). [CrossRef] [PubMed]
  17. J. L. Karagiannes, Z. Zhang, B. Grossweiner, L. I. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms,” Appl. Opt. 28, 2311–2317 (1989). [CrossRef] [PubMed]
  18. M. Keijzer, W. M. Star, P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988). [CrossRef] [PubMed]
  19. J. C. Haselgrove, J. C. Schotland, J. S. Leigh, “Long-time behavior of photon diffusion in an absorbing medium: application to time-resolved spectroscopy,” Appl. Opt. 31, 2678–2683 (1992). [CrossRef] [PubMed]
  20. D. T. Delpy, M. Cope, P. van der Zee, S. R. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988). [CrossRef] [PubMed]
  21. J. C. Hebden, R. A. Kruger, K. S. Wong, “Time-resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991). [CrossRef] [PubMed]
  22. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef] [PubMed]
  23. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element model for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
  24. S. R. Arridge, “Photon measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995). [CrossRef] [PubMed]
  25. S. R. Arridge, M. Schweiger, “Photon measurement density functions. Part 2: Finite element calculations,” Appl. Opt. 34, 8026–8037 (1995). [CrossRef] [PubMed]
  26. S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infra-red absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992). [CrossRef]
  27. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near-infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 360–371 (1993). [CrossRef]
  28. S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995). [CrossRef] [PubMed]
  29. toast reconstruction package available at http://www.medphys.ucl.ac.uk/toast/index.htm .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited