OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 34 — Dec. 1, 1997
  • pp: 9058–9067

Role of higher-order scattering in solutions to the forward and inverse optical-imaging problems in random media

E. M. Sevick-Muraca, D. L. Heintzelman, J. Lee, T. L. Troy, and D. Y. Paithankar  »View Author Affiliations

Applied Optics, Vol. 36, Issue 34, pp. 9058-9067 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (348 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



From analytical and numerical solutions that predict the scattering of diffuse photon density waves and from experimental measurements of changes in phase shift θ and ac amplitude demodulation M caused by the presence of single and double cylindrical heterogeneities, we show that second- and higher-order perturbations can affect the prediction of the propagation characteristics of diffuse photon density waves. Our experimental results for perfect absorbers in a lossless medium suggest that the performance of fast inverse-imaging algorithms that use first-order Born or Rytov approximations might have inherent limitations compared with inverse solutions that use iterative solutions of a linear perturbation equation or numerical solutions of the diffusion equation.

© 1997 Optical Society of America

Original Manuscript: May 22, 1997
Published: December 1, 1997

E. M. Sevick-Muraca, D. L. Heintzelman, J. Lee, T. L. Troy, and D. Y. Paithankar, "Role of higher-order scattering in solutions to the forward and inverse optical-imaging problems in random media," Appl. Opt. 36, 9058-9067 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. M. Wang, P. P. Ho, R. R. Alfano, “Double-stage picosecond Kerr gate for ballistic time-gated optical imaging in turbid media,” Appl. Opt. 32, 535–540 (1994). [CrossRef]
  2. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993). [CrossRef] [PubMed]
  3. S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996). [CrossRef]
  4. J. R. Singer, F. A. Grunbaum, P. Kohn, J. P. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science 248, 990–993 (1990). [CrossRef] [PubMed]
  5. J. C. Hebden, R. A. Kruger, K. S. Wong, “Time-resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991). [CrossRef] [PubMed]
  6. M. A. O’Leary, D. A. Boss, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef]
  7. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering maps in turbid media from near-infrared frequency domain data,” Opt. Lett. 20, 2128–2130 (1995). [CrossRef] [PubMed]
  8. H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using frequency domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996). [CrossRef]
  9. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results.” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997). [CrossRef]
  10. E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers obscured by scattering,” J. Photochem. Photobiol. B 16, 169–185 (1992). [CrossRef] [PubMed]
  11. E. Gratton, W. Mantulin, M. J. van de Ven, J. Fishkin, M. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993). [CrossRef]
  12. R. L. Barbour, H. L. Graber, Y. Wang, J. H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time resolved data,” in Fiber Optic Sensors: Engineering and Applications, A. J. Bruinsma, B. Culshaw, eds., Proc. SPIE1511, 87–120 (1993).
  13. S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991). [CrossRef]
  14. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “Performance of an iterative reconstruction algorithm for near-infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 360–371 (1993). [CrossRef]
  15. D. A. Boas, B. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytical solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994). [CrossRef]
  16. Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14, 325–342 (1997). [CrossRef]
  17. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissue: temporal and frequency-domain analysis,” Phys. Med. Biol. 37, 1531–1560 (1992). [CrossRef] [PubMed]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  19. C. L. Hutchinson, T. L. Troy, E. M. Sevick-Muraca. “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996). [CrossRef] [PubMed]
  20. D. A. Boas, http://dpdw.eotc.tufts.edu/boas/PMI/pmi.html .
  21. E. M. Sevick, J. K. Frisoli, C. L. Burch, J. R. Lakowicz, “Localization of absorbers in scattering media by use of frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3570 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited