OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 34 — Dec. 1, 1997
  • pp: 9068–9074

Laser–tissue interaction modeling with LATIS

R. A. London, M. E. Glinsky, G. B. Zimmerman, D. S. Bailey, D. C. Eder, and S. L. Jacques  »View Author Affiliations


Applied Optics, Vol. 36, Issue 34, pp. 9068-9074 (1997)
http://dx.doi.org/10.1364/AO.36.009068


View Full Text Article

Enhanced HTML    Acrobat PDF (169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The role of modeling in designing new treatment protocols and instruments is discussed. A computer program for modeling laser–tissue interaction named latis is described. Interactions are divided into the processes of laser propagation, thermal effects, material effects, and hydrodynamics. Full coupling of the processes is taken into consideration. Applications in photothermal and photomechanical laser–tissue interactions are briefly discussed. A detailed description is given of a particular application of latis to study the effects of dynamic optical properties on dosimetry in photothermal therapy. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered. It is found that proper accounting of dynamical optical properties is important for accurate dosimetry modeling.

© 1997 Optical Society of America

History
Original Manuscript: February 13, 1997
Revised Manuscript: July 21, 1997
Published: December 1, 1997

Citation
R. A. London, M. E. Glinsky, G. B. Zimmerman, D. S. Bailey, D. C. Eder, and S. L. Jacques, "Laser–tissue interaction modeling with LATIS," Appl. Opt. 36, 9068-9074 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-34-9068


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. J. Welch, M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995). [CrossRef]
  2. B.-M. Kim, S. L. Jacques, S. Rastegar, S. Thomsen, M. Motamedi, “Nonlinear finite element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue,” IEEE J. Selec. Top. Quantum Electron. 4, 922–933 (1996).
  3. G. B. Zimmerman, W. L. Kruer, “Numerical simulation of laser-initiated fusion,” Commun. Plasma Phys. Controlled Fusion 11, 51–61 (1975).
  4. P. F. DuBois, “Making applications programmable,” Comput. Phys. 8, 70–74 (1994). [CrossRef]
  5. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  6. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
  7. W. E. Alley, “A Maxwell equation solver for the simulation of moderately intense ultra-short pulse laser experiments,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1992), pp. 160–165.
  8. Y. I. Cho, ed., “Bioengineering heat transfer,” in Advances in Heat Transfer (Academic, San Diego, Calif., 1992), Vol. 22.
  9. C.-S. Orr, R. C. Eberhart, “Overview of bioheat transfer,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 367–384. [CrossRef]
  10. R. M. More, K. H. Warren, D. A. Young, G. B. Zimmerman, “A new quotidian equation of state (QEOS) for hot dense matter,” Phys. Fluids 31, 3059–3078 (1988). [CrossRef]
  11. D. A. Young, E. M. Corey, “A new global equation of state for hot, dense matter,” J. Appl. Phys. 78, 3748–3755 (1995). [CrossRef]
  12. L. Haar, J. S. Gallagher, G. S. Kell, NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984).
  13. J. Pearce, S. Thomsen, “Rate process analysis of thermal damage,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 561–608. [CrossRef]
  14. R. A. London, M. E. Glinsky, G. B. Zimmerman, D. C. Eder, S. L. Jacques, “Coupled light transport–heat diffusion model for laser dosimetry with dynamic optical properties,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 434–442 (1995). [CrossRef]
  15. M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Modeling of endovascular patch welding using the computer program latis,” in Laser-Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 262–272 (1995). [CrossRef]
  16. M. E. Glinsky, R. A. London, G. B. Zimmerman, S. L. Jacques, “Computer modeling of endovascular patch welding using temperature feedback,” in Medical Applications of Lasers III, F. Laffitte, ed., Proc. SPIE2623, 349–358 (1996). [CrossRef]
  17. D. J. Maitland, D. C. Eder, R. A. London, M. E. Glinsky, B. A. Soltz, “Dynamic simulations of tissue welding,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 234–242 (1996).
  18. R. A. London, D. S. Bailey, D. A. Young, W. E. Alley, M. D. Feit, A. M. Rubenchik, J. Neev, “Computational modeling of ultra-short-pulse ablation of enamel,” in Laser–Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 233–244 (1996). [CrossRef]
  19. M. Strauss, R. A. London, M. E. Glinsky, P. A. Amendt, D. J. Maitland, D. S. Bailey, D. A. Young, S. L. Jacques, “Computational modeling of laser thrombolysis for stroke treatment,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 11–21 (1996).
  20. G. Muller, A. Roggan, Laser-Induced Interstitial Thermotherapy (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1995).
  21. S. L. Jacques, M. O. Gaeeni, “Thermally induced changes in optical properties of heart,” in Proceedings of the 11th International Conference of the IEEE Engineering in Medicine and Biology (IEEE, New York, 1989), pp. 1199–1200.
  22. J. W. Valvano, “Tissue thermal properties and perfusion,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. Van Gemert, eds. (Plenum, New York, 1995), pp. 445–488. [CrossRef]
  23. T. N. Glenn, S. Rastegar, S. L. Jacques, F. Tittel, “Finite element analysis of temperature-controlled laser coagulation of biological tissue,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 383–390 (1994).
  24. B. Lobel, O. Eyal, E. Belotserkovsky, O. Shenfeld, N. Kariv, B. Goldwasser, A. Katzir, “In vivo CO2 laser rat urinary bladder welding with silver halide fiber optic radiometric temperature control,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 517–522 (1995).
  25. I. Cilesiz, E. K. Chan, A. J. Welch, S. L. Thomsen, “Controlled temperature tissue fusion: Ho:YAG laser welding of rat intestine in vivo,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, R. R. Anderson, ed., Proc. SPIE2395, 523–534 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited