OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 34 — Dec. 1, 1997
  • pp: 9075–9082

Liquid-core light guides for near-infrared applications

Stefan Diemer, Jörg Meister, Roland Jung, Sandra Klein, Michael Haisch, Werner Fuss, and Peter Hering  »View Author Affiliations


Applied Optics, Vol. 36, Issue 34, pp. 9075-9082 (1997)
http://dx.doi.org/10.1364/AO.36.009075


View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The strong absorption of tissue water is responsible for the low ablation threshold for biological tissues at the Er:YAG and Er:YSGG laser wavelengths. These lasers are therefore considered to be promising tools for medical treatments. As the existing transmission systems are still unsatisfactory, three types of liquid-filled light guides are investigated here as alternatives to conventional near-IR fibers. In addition to mechanical advantages, the minimum attenuation is below 3 dB/m, and losses at bending radii down to 20 mm are negligible. The maximum output energy densities of 14.2 J/cm2 (free-running Er:YAG) or power densities of 7 MW/cm2 (Q-switched Er:YAG) are sufficient for soft-tissue ablation. When the liquid was circulated, much higher energy densities, exceeding the hard-tissue ablation threshold, were achieved. These properties make liquid-core light guides promising delivery systems for many near-IR applications, including medical ones.

© 1997 Optical Society of America

History
Original Manuscript: March 20, 1997
Revised Manuscript: June 25, 1997
Published: December 1, 1997

Citation
Stefan Diemer, Jörg Meister, Roland Jung, Sandra Klein, Michael Haisch, Werner Fuss, and Peter Hering, "Liquid-core light guides for near-infrared applications," Appl. Opt. 36, 9075-9082 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-34-9075


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Dickinson, A. Charlton, T. A. King, A. J. Freemont, R. Bramley, “Studies of Er-YAG laser interactions with soft tissue,” Lasers Med. Sci. 6, 125–131 (1990). [CrossRef]
  2. I. M. Rizoiu, L. G. DeShazer, L. R. Eversole, “Soft tissue cutting with a pulsed 30-Hz Er,Cr:YSGG laser,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 273–283 (1995). [CrossRef]
  3. C. Cozean, “Er:YAG laser in dentistry and ophthalmology,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 284–295, (1995). [CrossRef]
  4. S. Hohenleutner, O. Bespalova, U. Wlotzke, U. Hohenleutner, M. Landthaler, “Photoablation der Haut mit einem leistungsstarken Er:YAG-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 273–276.
  5. M. H. Niemz, Laser–Tissue Interactions—Fundamentals and Applications (Springer-Verlag, Berlin, Heidelberg, New York, 1996), pp. 149–232.
  6. H. Kar, H. Ringelhan, “Grundlagen und Technik der Photoablation,” in Advances in Laser Medicine, G. J. Müller, H.-P. Berlien, eds. (Ecomed, Landsberg/Lech, Germany, 1992), Vol. 6, pp. 27–31.
  7. E. V. Zharikov, V. I. Zhekov, L. R. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savel’ev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 µ,” Sov. J. Quantum Electron. 4, 1039–1040 (1975). [CrossRef]
  8. Ref. 6, pp. 147–162, 192–193.
  9. C. Deuerling, W. Prettl, M. Nuebler-Moritz, H. Niederdellmann, P. Hering, W. Falkenstein, B. Rückle, “Transmission systems for the Er:YAG laser (2.94 µm)—state of the art,” in Laser in Forschung und Technik, W. Waidelich, H. Hügel, H. Opower, H. Tiziani, R. Wallenstein, W. Zinth, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 754–757; in Laser in der Medizin, W. Waidelich, G. Staehler, R. Waidelich, eds. (Springer-Verlag, Berlin, Heidelberg, 1996), pp. 548–551.
  10. I. Gannot, S. Schründer, T. Ertl, J. Tschepe, J. Dror, G. Müller, N. Croitoru, “Flexible waveguides for the delivery of high power Er-YAG laser radiation,” in Optical Fibers in Medicine VIII, A. Katzir, ed. Proc. SPIE1893, 188–194 (1993). [CrossRef]
  11. I. Gannot, J. Dror, N. Croitoru, S. Schründer, J. Tschepe, T. Ertl, G. Müller, “Er-YAG laser flexible waveguides,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE2084, 20–26 (1994). [CrossRef]
  12. M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995). [CrossRef]
  13. R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguide for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996). [CrossRef] [PubMed]
  14. E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970). [CrossRef]
  15. J. Stone, “Optical transmission loss in liquid-core hollow fibers,” IEEE J. Quantum Electron. QE-8, 386–388 (1972). [CrossRef]
  16. J. Stone, “Optical transmission in liquid-core quartz fibers,” Appl. Phys. Lett. 20, 239–240 (1972). [CrossRef]
  17. G. J. Ogilvie, R. J. Esdaile, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972). [CrossRef]
  18. G. Nath, “Biegsamer Lichtleiter,” German patent2,352,670 (30April1975).
  19. G. Nath, “Biegsamer Lichtleiter,” German patent2,424,620 (4December1975).
  20. M. Haisch, “Untersuchungen über Lichtleiter für die Übertragung hoher Laserenergien: —Ray-Tracing-Rechnungen, —Lichtleiter mit flüssigem Kern,” 160 (Max-Planck-Institut für Quantenoptik, Garching, Germany, 1991).
  21. H. H. Marvin, “The selective transmission and the dispersion of liquid chlorides,” Phys. Rev. 34, 161–186 (1912).
  22. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  23. I. H. Malitson, “A redetermination of some optical properties of calcium fluoride,” Appl. Opt. 2, 1103–1107 (1963). [CrossRef]
  24. J. C. Seferis, “Refractive indices of polymers,” in Polymer Handbook, 3rd ed., J. Brandrup, E. H. Immergut, eds. (Wiley, New York, 1989), pp. VI/451–VI/461.
  25. J. P. Dakin, W. A. Gambling, D. N. Payne, H. R. D. Sunak, “Launching into glass-fibre optical waveguides,” Opt. Commun. 4, 354–357 (1972). [CrossRef]
  26. A. K. Majumdar, E. D. Hinkley, R. T. Menzies, “Infrared transmission at the 3.39 µm helium–neon laser wavelength in liquid-core quartz fibers,” IEEE J. Quantum Electron. QE-15, 408–410 (1979). [CrossRef]
  27. H. Lengfellner, S. Zeuner, W. Prettl, K. F. Renk, “Thermoelectric effect in normal-state YBa2Cu3O7-δ films,” Europhys. Lett. 25, 375–378 (1994). [CrossRef]
  28. K. F. Renk, J. Betz, S. Zeuner, H. Lengfellner, W. Prettl, “Thermopile effect due to laser radiation heating in thin films of high-Tc materials,” Physica C 235-240, 37–40 (1994). [CrossRef]
  29. M. Kauf, S. Schuberth, J. Hutfless, J. Betz, S. Zeuner, H. Lengfellner, “Atomlagen-Thermosäule—Ein neuartiger Detektor für die Laserstrahldiagnose,” Laser Mag. 5, 12–16 (1994).
  30. B. L. Rathbun, P. W. Schuessler, “Moisture permeation of polymer sealants and interface modifying films” in Adhesive Chemistry—Developments and Trends, L.-H. Lee, ed. (Plenum, New York, 1984), pp. 785–798 and literature cited therein.
  31. S. Diemer, W. Fuss, M. Haisch, J. Meister, P. Hering, “Liquid light guides for 2.94 µm,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, A. Katzir, eds., Proc. SPIE2396, 88–94 (1995). [CrossRef]
  32. S. V. Gangal, “Tetrafluoroethylene polymers,” in Encyclopedia of Polymer Science and Engineering, Vol. 16, H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, eds. (Wiley, New York, 1989), Vol. 16, pp. 577–648.
  33. Calculated from the data of H. Gerstenberger, “Zur Durchlässigkeit von Wasser durch die Wandungen von Kunststoffflaschen,” GIT Fachz. Lab. 38, 279–284 (1994) and the nominal wall thickness of 0.76 mm from C. Morel, Product Information [Nalge (Europe) Inc., Hereford, UK].
  34. H. Ehrich, B. Hasse, M. Mausbach, K. G. Müller, “Plasma deposition of thin films utilizing the anodic vacuum arc,” IEEE Trans. Plasma Sci. 18, 895–903 (1990). [CrossRef]
  35. J. Meister, R. Jung, S. Diemer, M. Haisch, W. Fuss, P. Hering, “Advances in the development of liquid core waveguides for IR applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 120–126 (1996). [CrossRef]
  36. C. A. Sperati, “Physical constants of fluoropolymers,” in Polymer Handbook, 3rd ed., J. Brandrup, E. H. Immergut, eds. (Wiley, New York, 1989), pp. V/35–V/59.
  37. Gmelins Handbuch der anorganischen Chemie, “Kohlenstoff,”Part B, 8th ed. (Verlag Chemie, Weinheim, Germany, 1968), pp. 923–933.
  38. J. Meister, S. Diemer, R. Jung, S. Klein, W. Fuss, P. Hering, “Liquid-core fused-silica capillary lightguides for applications in the UV/VIS and NIR spectral range,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 58–66 (1997). [CrossRef]
  39. S. Klein, J. Meister, S. Diemer, R. Jung, W. Fuss, P. Hering, “High-power laser waveguide with a circulating liquid core for IR applications,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 155–163 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited