OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 35 — Dec. 10, 1997
  • pp: 9186–9197

Evaluation of least-squares phase-diversity technique for space telescope wave-front sensing

David J. Lee, Michael C. Roggemann, Byron M. Welsh, and Erin R. Crosby  »View Author Affiliations


Applied Optics, Vol. 36, Issue 35, pp. 9186-9197 (1997)
http://dx.doi.org/10.1364/AO.36.009186


View Full Text Article

Enhanced HTML    Acrobat PDF (621 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Because of mechanical aspects of fabrication, launch, and operational environment, space telescope optics can suffer from unforeseen aberrations, detracting from their intended diffraction-limited performance goals. We give the results of simulation studies designed to explore how wave-front aberration information for such near-diffraction-limited telescopes can be estimated through a regularized, low-pass filtered version of the Gonsalves (least-squares) phase-diversity technique. We numerically simulate models of both monolithic and segmented space telescope mirrors; the segmented case is a simplified model of the proposed next generation space telescope. The simulation results quantify the accuracy of phase diversity as a wave-front sensing (WFS) technique in estimating the pupil phase map. The pupil phase is estimated from pairs of conventional and out-of-focus photon-limited point-source images. Image photon statistics are simulated for three different average light levels. Simulation results give an indication of the minimum light level required for reliable estimation of a large number of aberration parameters under the least-squares paradigm. For weak aberrations that average a 0.10λ pupil rms, the average WFS estimation errors obtained here range from a worst case of 0.057λ pupil rms to a best case of only 0.002λ pupil rms, depending on the light level as well as on the types and degrees of freedom of the aberrations present.

© 1997 Optical Society of America

History
Original Manuscript: January 2, 1997
Revised Manuscript: April 28, 1997
Published: December 10, 1997

Citation
David J. Lee, Michael C. Roggemann, Byron M. Welsh, and Erin R. Crosby, "Evaluation of least-squares phase-diversity technique for space telescope wave-front sensing," Appl. Opt. 36, 9186-9197 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-35-9186


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Lee, M. C. Roggemann, B. M. Welsh, “Using wavefront sensor information in image post-processing to improve the resolution of telescope with small aberrations,” in Current Developments in Optical Design and Engineering VI, R. E. Fischer, W. J. Smith, eds., Proc. SPIE2863, 42–53 (1996).
  2. R. K. Tyson, Principles of Adaptive Optics (Academic, San Diego, 1991).
  3. D. L. Fried, “Post-detection wavefront distortion compensation,” in Digital Image Recovery and Synthesis, P. S. Idell, ed., Proc. SPIE828, 127–133 (1987). [CrossRef]
  4. J. Primot, G. Rousset, J. C. Fontanella, “Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. A 7, 1589–1608 (1990). [CrossRef]
  5. B. M. Welsh, M. C. Roggemann, “Signal-to-noise comparison of deconvolution from wave-front sensing with traditional linear and speckle image reconstruction,” Appl. Opt. 34, 2111–2119 (1995). [CrossRef] [PubMed]
  6. R. A. Gonsalves, R. Chidlaw, “Wavefront sensing by phase retrieval,” in Applications of Digital Image Processing III, A. J. Tescher, ed., Proc. SPIE207, 32–39 (1979).
  7. R. A. Golsalves, “Fundamentals of wavefront sensing by phase retrieval,” in Wavefront Sensing, N. Bareket, C. L. Koliopoulos, eds., Proc. SPIE351, 56–65 (1982). [CrossRef]
  8. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. 21, 829–832 (1982). [CrossRef]
  9. M. C. Roggemann, B. M. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, Fla., 1996).
  10. R. G. Paxman, S. L. Crippen, “Aberration correction for phased-array telescope using phase diversity,” in Digital Image Synthesis and Inverse Optics, A. F. Gmitro, P. S. Idell, I. J. Haiè, eds., Proc. SPIE1351, 787–797 (1990). [CrossRef]
  11. R. G. Paxman, J. R. Fienup, “Optical misalignment sensing using phase diversity,” J. Opt. Soc. Am. A 5, 914–923 (1988). [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1994).
  13. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. A 66, 207–211 (1976). [CrossRef]
  14. “What will be the next Big Thing,” Nature 381, 465 (1996). [CrossRef]
  15. D. Dooling, “Beyond Hubble,” The Institute (IEEE monthly newsletter)1 (June1996).
  16. A. Watson, “Hubble successor gathers support,” Science 272, 1735 (1996). [CrossRef]
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1998).
  18. R. G. Paxman, T. J. Schulz, J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072–1085 (1992). [CrossRef]
  19. R. L. Langendijk, A. M. Tekalp, J. Biemond, “Maximum likelihood image and blur identification: a unifying approach,” Opt. Eng. 29, 422–435 (1990). [CrossRef]
  20. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall, Englewoods Cliffs, N. J., 1993).
  21. I. J. D. Craig, J. C. Brown, Inverse Problems in Astronomy: a Guide to Inversion Strategies for Remotely Sensed Data (Hilger, Bristol, UK, 1986).
  22. M. C. Roggemann, D. W. Tyler, M. F. Bilmont, “Linear reconstruction of compensated images: theory and experimental results,” Appl. Opt. 31, 7429–7441 (1992). [CrossRef] [PubMed]
  23. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  24. D. L. Snyder, M. I. Miller, Random Point Processes in Time and Space (Springer, New York, 1991). [CrossRef]
  25. C. Chi, P. Mehta, A. Ostroff, “Vibrational modes of the primary mirror structure in the large space telescope system,” in Space Optics: Proceedings of the Ninth International Conference of the International Commission for OpticsB. J. Thompson, R. R. Shannon, eds. (National Academy of Sciences, Washington, D.C., 1974), Vol. 9, pp. 209–238.
  26. L. Needels, B. M. Levine, M. Milman, “Limits on adaptive optics systems for lightweight space telescopes,” in Space Astronomical Telescopes and Instruments II, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE1945, 176–184 (1993).
  27. A. Grace, Optimization Toolbox for Use with MATLAB (Math Works, Inc., Natick, Mass., 1992).
  28. C. Kittel, H. Kroemer, Thermal Physics (Freeman, New York, 1980).
  29. R. G. Paxman, J. H. Seldin, M. G. Lofdahl, G. B. Scharmer, C. U. Keller, “Evaluation of phase diversity techniques for solar-image restoration,” Astrophys. J. 466, 1087–1099 (1996). [CrossRef]
  30. M. G. Lofdahl, G. B. Scharmer, “Wavefront sensing and image restoration from focused and defocused solar images,” Astron. Astrophys. Suppl. Ser. 107, 243–264 (1994).
  31. J. R. Fienup, J. C. Marron, T. J. Schulz, J. H. Seldin, “Hubble space telescope characterized by using phase-retrieval algorithms,” Appl. Opt. 32, 1747–1767 (1993). [CrossRef] [PubMed]
  32. W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes in FORTRAN, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, UK, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited