OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 4 — Feb. 1, 1997
  • pp: 949–957

Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms

Judith R. Mourant, Tamika Fuselier, James Boyer, Tamara M. Johnson, and Irving J. Bigio  »View Author Affiliations

Applied Optics, Vol. 36, Issue 4, pp. 949-957 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Predictions from Mie theory regarding the wavelength dependence of scattering in tissue from the near UV to the near IR are discussed and compared with experiments on tissue phantoms. For large fiber separations it is shown that rapid, simultaneous measurements of the elastic scatter signal for several fiber separations can yield the absorption coefficient and reduced scattering coefficient. With this information, the size of the scattering particles can be estimated, and this is done for Intralipid. Measurements made at smaller source detector separations support Mie theory calculations, demonstrating that the sensitivity of elastic scatter measurements to morphological features, such as scatterer size, is enhanced when the distance between the source and detector fibers is small.

© 1997 Optical Society of America

Original Manuscript: October 6, 1995
Revised Manuscript: June 6, 1996
Published: February 1, 1997

Judith R. Mourant, Tamika Fuselier, James Boyer, Tamara M. Johnson, and Irving J. Bigio, "Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms," Appl. Opt. 36, 949-957 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wu, M. S. Feld, R. P. Rava, “Analytic model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993). [CrossRef] [PubMed]
  2. E. M. Sevick, C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994). [CrossRef]
  3. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995). [CrossRef] [PubMed]
  4. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995). [CrossRef] [PubMed]
  5. S. A. Ahmed, Z.-W. Zang, K. M. Yoo, R. R. Alfano, “Effect of multiple light scattering and self-absorption on the fluorescence and excitation spectra of dyes in random media,” Appl. Opt. 33, 2746–2750 (1994). [CrossRef] [PubMed]
  6. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J.-F. Savary, P. Monnier, H. van den Bergh, “Clinical determination of tissue optical properties by endoscopically resolved reflectometry,” Appl. Opt. 35, 1756–1766 (1996). [CrossRef] [PubMed]
  7. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of chromophores in a strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33, 5204–5213 (1994). [CrossRef] [PubMed]
  8. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350–357 (1995). [CrossRef] [PubMed]
  9. T. Vo-Dinh, M. Panjehpour, B. F. Overholt, C. Farris, F. P. Buckley, R. Sneed, “In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices,” Lasers Surg. Med. 16, 41–47 (1995). [CrossRef] [PubMed]
  10. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, T. M. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992). [CrossRef] [PubMed]
  11. N. Ramanujan, M. F. Mitchell, S. Warren, S. Thomsen, E. Silva, R. Richards-Kortum, “In vivo diagnosis of cervical intraepithelial neoplasia using 337-nm-excited laser-induced fluorescence,” Proc. Nat. Acad. Sci. U.S.A. 91(21) , 10193–10197 (1994). [CrossRef]
  12. The spheres are actually a mixture of polystyrene, polystyrene divingl-benzene, polyvinyltoluene, and/or butadiene.
  13. G. C. Salzman, “Light scattering analysis of single cells,” in Cell Analysis, N. Catsimpoolas, ed. (Plenum, New York, 1982), Vol. 1, pp. 111–143. [CrossRef]
  14. C. Lenter, ed., Geigy Scientific Tables (Ciba-Geigy, Basle, 1984), Vol. 3, p. 69.
  15. A. Brunsting, P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys J. 14, 439–453 (1974). [CrossRef] [PubMed]
  16. R. C. Weast, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1984), p. D-221.
  17. S. Fujime, M. Takasaki-Oshito, S. Miyamoto, “Dynamic light scattering from polydisperse suspensions of large spheres,” Biophys. J. 54, 1179–1184 (1988). [CrossRef] [PubMed]
  18. This is the definition of the size parameter used by Bohren, Huffman (Ref. 19, p. 100). The definition x = 2πr/λ is also found frequently in the literature.
  19. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  20. R. A. Meyer, “Light scattering from biological cells: dependence of backscatter radiation on membrane thickness and refractive index,” Appl. Opt. 18, 585–588 (1979). [CrossRef] [PubMed]
  21. M. Kerker, D. D. Cooke, H. Chew, P. J. McNulty, “Light scattering by structured spheres,” J. Opt. Soc. Am. 68, 592–601 (1978). [CrossRef]
  22. R. Graaff, J. G. Aarnoose, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992). [CrossRef] [PubMed]
  23. J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993). [CrossRef] [PubMed]
  24. B. J. Tromberg, L. O. Svaasand, T.-T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–616 (1993). [CrossRef] [PubMed]
  25. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  26. R. C. Haskell, L. O. Svaasand, T-C. Feng, M. S. McAdams, B. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  27. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992). [CrossRef] [PubMed]
  28. H. J. van Staveren, C. J. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  29. J. Boyer, J. R. Mourant, I. J. Bigio, “Theoretical and experimental investigations of elastic scattering spectroscopy as a potential diagnostic for tissue pathologies,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of 1994 OSA Proceedings (Optical Society of America, Washington, D.C., 1994), pp. 265–268.
  30. B. Chance, H. Liu, T. Kitai, Y. Zhang, “Effects of solutes on optical properties of biological materials: models, cells and tissue,” Anal. Biochem. 227, 351–362 (1995). [CrossRef] [PubMed]
  31. H. L. Liu, D. A. Boas, Y. T. Zhang, A. G. Yodh, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995). [CrossRef] [PubMed]
  32. J. R. Mourant, A. H. Hielscher, H. D. Miller, J. S. George, “Broadband monitoring of physiological changes with a continuous light tissue spectrometer,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 37–42.
  33. M. G. Nichols, E. L. Hull, T. H. Foster, “Spatially and spectrally resolved steady-state diffuse reflectance measurements of the optical properties of tissue-simulating phantoms,” in Biomedical Optical Spectroscopy and Diagnostics, Vol. 3 of Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), Vol. 3, pp. 50–58.
  34. J. M. Steinke, A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt. 27, 4027–4033 (1988). [CrossRef] [PubMed]
  35. B. Beauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, B. Chance, “Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,” Cell Biophys. 23, 91–109 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited