OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 4 — Feb. 1, 1997
  • pp: 958–967

Spectrally resolved absolute fluorescence cross sections for bacillus spores

Gregory W. Faris, Richard A. Copeland, Kristien Mortelmans, and Burt V. Bronk  »View Author Affiliations

Applied Optics, Vol. 36, Issue 4, pp. 958-967 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (382 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Absolute fluorescence cross sections for Bacillus subtilis and B. cereus bacterial spores as both aqueous suspensions and aerosols were measured at a number of excitation wavelengths between 228 and 303 nm. The fluorescence was spectrally resolved at each excitation wavelength. We found that the optimum excitation wavelength for spore fluorescence is between 270 and 280 nm. The fluorescence cross section for aqueous suspensions is four times larger than for dry aerosols when measured under similar conditions. Measurements on wet aerosols showed an increase in fluorescence cross section over dry aerosols, indicating an enhancement of the fluorescence when the bacterial spores are wet. Mie scattering cross sections at 90° to the direction of the incident radiation and extinction cross sections as a function of wavelength for B. subtilis suspensions and fluorescence cross sections for tryptophan are also reported.

© 1997 Optical Society of America

Original Manuscript: April 15, 1996
Revised Manuscript: June 24, 1996
Published: February 1, 1997

Gregory W. Faris, Richard A. Copeland, Kristien Mortelmans, and Burt V. Bronk, "Spectrally resolved absolute fluorescence cross sections for bacillus spores," Appl. Opt. 36, 958-967 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. C. Shelly, J. M. Quarles, I. M. Warner, “Identification of fluorescent Pseudomonas species,” Clin. Chem. 26, 1127–1132 (1960).
  2. D. C. Shelly, J. M. Quarles, I. M. Warner, “Multiparameter approach to the “fingerprint” of fluorescent Pseudomonas,” Clin. Chem. 26, 1127–1132 (1960).
  3. J. Oblanas, D. Ross, V. Simmon, F. L. Ludwig, M. Anbar, “Optical techniques for the remote detection of biological aerosols,” (SRI International, Menlo Park, Calif., 1974).
  4. W. B. Grant, Optical Bases for Remote Biological Aerosol Detection, (SRI International, Menlo Park, Calif., 1977).
  5. W. B. Grant, C. L. Witham, Remote Biological Aerosol Detection, (SRI International, Menlo Park, Calif., 1978).
  6. W. K. Bischel, E. J. Brackman, A. A. Burns, P. L. Burns, J. G. Depp, D. J. Eckstrom, J. G. Hawley, R. T. Rewrek, H. E. Stuler, M. W. Wilson, Exploratory Development of a Remote NBC Detector Using Ultraviolet Technology, (SRI International, Menlo Park, Calif., 1984).
  7. J. T. Coburn, F. E. Lytel, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985). [CrossRef]
  8. T. M. Rossi, I. M. Warner, “Bacterial identification using fluorescence spectroscopy,” in Instrumental Methods for Rapid Microbiological Analysis, W. H. Nelson, ed. (VCH Publishers, New York, 1985), pp. 1–50.
  9. R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, D. Psaras, J. F. Tanguay, S. L. Suib, “Steady-state and decay characteristics of protein tryptophan fluorescence from bacteria,” Appl. Spectrosc. 40, 86–90 (1986). [CrossRef]
  10. C.-P. Pau, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of flavobacterium and shpingobacterium species by enzyme profiles, with use of pattern recognition of two-dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987). [PubMed]
  11. R. A. Dalterio, W. H. Nelson, D. Britt, J. Sperry, J. F. Tanguay, S. L. Suib, “The steady-state and decay characteristics of primary fluorescence from live bacteria,” Appl. Spectrosc. 41, 234–241 (1987). [CrossRef]
  12. L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).
  13. B. V. Bronk, L. Reinisch, “Variability of steady state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993). [CrossRef]
  14. R. Manoharan, E. Ghiamati, S. Chadna, W. H. Nelson, J. F. Sperry, “Effect of cultural conditions of deep UV resonance Raman spectra of bacteria,” Appl. Spectrosc. 47, 2145–2150 (1993). [CrossRef]
  15. S. A. Glazier, H. H. Weetall, “Autofluorescence detection of Escherichia coli on silver membrane filters,” J. Microbiol. Methods 20, 23–27 (1994). [CrossRef]
  16. M. J. Sorrell, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994). [CrossRef] [PubMed]
  17. J. A. Werkhaven, L. Reinisch, M. Sorrel, J. Tribble, R. H. Ossoff, “Noninvasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994). [CrossRef] [PubMed]
  18. W. K. Bischel, G. Black, “Wavelength dependence of Raman scattering cross sections from 200–600 nm,” in Excimer Lasers-1983, C. K. Rhodes, H. Egger, H. Pummer, eds. (American Institute of Physics, New York, 1983), pp. 181–187.
  19. G. W. Faris, R. A. Copeland, “Measurement of the wavelength dependence of the Raman cross section for liquid water,” submitted to Appl. Opt.
  20. E. P. Ippen, C. V. Shank, A. Dienes, “Rapid photobleaching of organic laser dyes in continuously operated devices,” IEEE J. Quantum Electron. 7, 178–179 (1971). [CrossRef]
  21. D. B. Wetlaufer, “Ultraviolet spectra of proteins and amino acids,” Adv. Protein Chem. 17, 303–390 (1962). [CrossRef]
  22. F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 65, 476–482 (1957). [PubMed]
  23. R. F. Chen, “Fluorescence quantum yields of tryptophan and tyrosine,” Anal. Lett. 1, 35–42 (1967). [CrossRef]
  24. R. F. Chen, “Fluorescence of proteins and peptides,” in Practical Fluorescence, 2nd ed., G. G. Guilbalt, ed. (Marcel Dekker, New York, 1990), p. 621.
  25. W. G. Murrell, “Chemical composition of spores and spore structures,” in The Bacterial Spore, G. W. Gould, A. Hurst, eds. (Academic, London, 1969), Chap. 7.
  26. T. C. Beaman, J. T. Greenamyre, T. R. Corner, H. S. Pankratz, P. Gerhardt, “Bacterial spore heat resistance correlated with water content, wet density, and protoplast sporoplast colume ratio,” J. Bacteriol. 150, 870–877 (1982). [PubMed]
  27. A. D. Hitchins, G. W. Gould, A. Hurst, “The swelling of bacterial spores during germination and outgrowth,” J. Gen. Microbiol. 30, 445–453 (1963). [CrossRef] [PubMed]
  28. W. G. Murrell, A. D. Warth, “Composition and heat resistance of bacterial spores,” in Spores III: A Symposium, L. L. Campbell, H. O. Halvorson, eds. (American Society for Microbiology, Allerton Park, Ill., 1964), extracted from Figs. 9 and 10.
  29. R. Sherrer, V. E. Shull, “Microincineration and elemental x-ray microanalysis of single B. cereus spores,” Can. J. Microbiol. 33, 304–313 (1987). [CrossRef]
  30. J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by UV spectrum of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967). [CrossRef] [PubMed]
  31. T. Barela, D. Sherry, “A simple, one-step fluorometric method for determination of nanomolar concentrations of terbium,” Anal. Biochem. 71, 351–357 (1976). [CrossRef] [PubMed]
  32. W. Ma, K. J. Hwang, V. Lee, “A fluorescence quenching method for estimating chelate conjugated macromolecules,” Pharmaceutical Research 10 (2) , 204–207 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited