OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 7 — Mar. 1, 1997
  • pp: 1684–1693

Intraocular laser surgical probe for membrane disruption by laser-induced breakdown

Daniel X. Hammer, Gary D. Noojin, Robert J. Thomas, Candace E. Clary, Benjamin A. Rockwell, Cynthia A. Toth, and W. P. Roach  »View Author Affiliations


Applied Optics, Vol. 36, Issue 7, pp. 1684-1693 (1997)
http://dx.doi.org/10.1364/AO.36.001684


View Full Text Article

Enhanced HTML    Acrobat PDF (848 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiber probe has been designed as a surgical aid to cut intraocular membranes with laser-induced breakdown as the mechanism. The design of the intraocular laser surgical probe is discussed. A preliminary retinal damage distance has been calculated with breakdown threshold, spot size, and shielding measurements. Collateral mechanical-damage effects caused by shock wave and cavitation are discussed.

© 1997 Optical Society of America

History
Original Manuscript: March 25, 1996
Revised Manuscript: July 29, 1996
Published: March 1, 1997

Citation
Daniel X. Hammer, Gary D. Noojin, Robert J. Thomas, Candace E. Clary, Benjamin A. Rockwell, Cynthia A. Toth, and W. P. Roach, "Intraocular laser surgical probe for membrane disruption by laser-induced breakdown," Appl. Opt. 36, 1684-1693 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-7-1684


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Yanoff, B. S. Fine, “Diabetes Mellitus,” in Duane’s Foundations of Clinical Ophthalmology, Vol. 3, W. Tasman, E. A. Jaeger, eds. (Lippincott, Philadelphia, 1992), Chap. 18, pp. 4–11.
  2. W. E. Benson, W. Tasman, T. D. Duane, “Diabetes mellitus and the eye,” in Duane’s Clinical Ophthalmology, Vol. 3, W. Tasman, E. A. Jaeger, eds. (Lippincott, Philadelphia, 1992), Chap. 30, pp. 8–12.
  3. G. C. Brown, W. E. Benson, “Treatment of diabetic traction retinal detachment with the pulsed Neodymium-YAG laser,” Am. J. Ophthalmol. 99, 258–262 (1985). [PubMed]
  4. W. E. Benson, “Vitrectomy,” in Duane’s Clinical Ophthalmology, Vol. 6, W. Tasman, E. A. Jaeger, eds. (Lippincott, Philadelphia, 1992), Chap. 56, pp. 1–33.
  5. T. M. Aaberg, G. W. Abrams, “Changing indications and techniques for vitrectomy in management of complications of diabetic retinopathy,” Ophthalmol. 94, 775–779 (1987). [CrossRef]
  6. M. S. Mandelcorn, G. Blankenship, R. Machemer, “Pars plana vitrectomy for the management of severe diabetic retinopathy,” Am. J. Ophthalmol. 81, 561–570 (1976). [PubMed]
  7. T. A. Rice, R. G. Michels, E. R. Rice, “Vitrectomy for diabetic traction retinal detachment involving the macula,” Am. J. Ophthalmol. 95, 22–33 (1983). [PubMed]
  8. S. M. Meyers, R. F. Bonner, M. M. Rodrigues, E. J. Ballintine, “Phototransection of vitreal membranes with the carbon dioxide laser in rabbits,” Ophthalmol. 90, 563–568 (1983). [CrossRef]
  9. S. Borirakchanyavat, C. A. Puliafito, G. H. Kliman, T. I. Margolis, E. L. Galler, “Holmium-YAG laser surgery on experimental vitreous membranes,” Arch. Ophthalmol. 109, 1605–1609 (1991). [CrossRef] [PubMed]
  10. P. D. Brazitikos, D. J. D’Amico, M. T. Bernal, A. W. Walsh, “Erbium:YAG laser surgery of the vitreous and retina,” Ophthalmol. 102, 278 (1995). [CrossRef]
  11. M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, M. A. Peters, “Endoexcimer laser intraocular ablative photo-decomposition,” Am. J. Ophthalmol. 98, 483–484 (1985).
  12. D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, A. Lewis, “Vitreoretinal ablation with the 193-nm excimer laser in fluid media,” Invest. Ophthalmol. Visual Sci. 35, 3835–3840 (1994).
  13. P. Rol, P. Niederer, F. Fankhauser, M. Arigoni, E. DeHaller, “Q-switched pulses and optical breakdown generation through optical fibers,” Lasers Light Ophthalmol. 3, 213–219 (1990).
  14. H. Green, J. Ball, J. Parrish, I. Kochevar, A. Oseroff, “Cytoxicity and mutagenicity of low intensity 248 and 193 nm excimer laser radiation in mammalian cells,” Cancer Res. 47, 410–413 (1987). [PubMed]
  15. P. K. Kennedy, “A first-order model for the computation of laser-induced breakdown thresholds in ocular and aqueous Media: Part I—Theory,” IEEE J. Quantum Electron. 31, 2241–2250 (1995). [CrossRef]
  16. P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, W. P. Roach, “A first-order model for the computation of laser-induced breakdown thresholds in ocular and aqueous media: Part II—comparison to experiment,” IEEE J. Quantum Electron. 31, 2250–2257 (1995). [CrossRef]
  17. D. X. Hammer, R. J. Thomas, G. D. Noojin, B. A. Rockwell, P. K. Kennedy, W. P. Roach, “Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media,” IEEE J. Quantum Electron. 32, 670–678 (1996). [CrossRef]
  18. D. J. Stolarski, J. Hardman, C. Bramlette, G. D. Noojin, R. J. Thomas, B. A. Rockwell, W. P. Roach, “Integrated light spectroscopy laser induced breakdown in aqueous media,” in Laser Tissue Interaction VI, S. L. Jacques, ed., Proc. SPIE2391, 100–109 (1995). [CrossRef]
  19. A. Vogel, S. Busch, K. Jungnickel, R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994). [CrossRef] [PubMed]
  20. D. Aron-Rosa, J. J. Aron, M. Griesemann, R. Thyzel, “Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report,” J. Am. Intraocular Implant Soc. 6, 352–354 (1980).
  21. F. Frankhauser, P. Roussel, J. Steffen, E. van der Zypen, A. Chrenkova, “Clinical studies on the efficiency of high power laser radiation upon some structures of the anterior segment of the eye,” Int. Ophthalmol. 3, 129–139 (1981). [CrossRef]
  22. F. Fankhauser, H. Lortscher, E. van der Zypen, “Clinical studies on high and low power laser radiation upon some structures of the anterior and posterior segments of the eye,” Int. Ophthalmol. 5, 15–32 (1982). [CrossRef] [PubMed]
  23. A. C. Terry, W. J. Stark, A. E. Maumenee, W. Fagadau, “Neodymium-YAG laser for posterior capsulotomy,” Am. J. Ophthalmol. 96, 716–720 (1983). [PubMed]
  24. M. M. Krasnov, “Laseropuncture of anterior chamber angle in glaucoma,” Am. J. Ophthalmol. 75, 674–678 (1973). [PubMed]
  25. E. van der Zypen, F. Fankhauser, H. Bebie, J. Marshall, “Changes in the ultrastructure of the iris after irradiation with intense light,” Adv. Ophthalmol. 39, 59–180 (1979).
  26. R. M. Klapper, “Q-switched neodymium:YAG laser iridotomy,” Ophthalmol. 91, 1017–1021 (1984). [CrossRef]
  27. R. F. Bonner, S. M. Meyers, D. E. Gaasterland, “Threshold for retinal damage associated with the use of high-power neodymium-YAG laser in the vitreous,” Am. J. Ophthalmol. 96, 153–159 (1983). [PubMed]
  28. C. A. Toth, D. X. Hammer, K. Slawinski, G. D. Noojin, “Gradient index (GRIN) lens multimode fiber probe for laser induced breakdown in the eye,” in Ophthalmic Technologies IV, J. M. Parel, Q. Ren, eds., Proc. SPIE2126, 291–304 (1994). [CrossRef]
  29. C. A. Toth, D. X. Hammer, W. P. Roach, “Gradient index optics for ophthalmic laser surgery,” ARVO Abstracts: Invest. Ophthalmol. Visual Sci. 35, 1614 (1994).
  30. K. Nakatate, N. Shamoto, T. Oohasi, T. Tsumanuma, K. Sanada, “Silica based rod lens for the medical fiberscope,” in Specialty Fibers for Biomedical and System Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2131, 203–214 (1994).
  31. M. M. Pankratov, O. Pomerantzeff, K. P. Pflibsen, G. R. Bearse, “A step-zoom probe for laser endophotocoagulation,” Ophthalmic Surg. 18, 61–65 (1987). [PubMed]
  32. D. Decker-Dunn, D. A. Christensen, G. M. Vincent, “Multifiber gradient-index lens laser angioplasty probe,” Lasers Surg. Med. 10, 85–93 (1990). [CrossRef] [PubMed]
  33. P. Rol, F. Fankhauser, S. Kwasniewska, P. Niederer, “A comparison of ophthalmic fiber optic microfocusing systems,” Lasers Light Ophthalmol. 2, 115–124 (1988).
  34. R. E. Setchell, P. Klingsporn, “Laser-induced damage studies on step-index, multimode fibers,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE1624, 56–64 (1991).
  35. D. J. Finney, Probit Analysis, 3rd ed. (Cambridge University, Cambridge, England, 1971).
  36. A. E. Siegman, M. W. Sasnett, T. F. Johnston, “Choice of clip levels for beam width measurements using knife-edge techniques,” IEEE J. Quantum Electron. 27, 1098–1104 (1991). [CrossRef]
  37. F. Docchio, L. Dossi, C. A. Sacchi, “Q-switched Nd:YAG laser irradiation of the eye and related phenomena: An experimental study. I. Optical breakdown determination for liquids and membranes,” Lasers Life Sci. 1, 87–103 (1986).
  38. F. Docchio, L. Dossi, C. A. Sacchi, “Q-switched Nd:YAG laser irradiation of the eye and related phenomena: An experimental study. II. Shielding properties of laser-induced plasmas in liquids and membranes,” Lasers Life Sci. 1, 105–116 (1986).
  39. D. X. Hammer, R. J. Thomas, M. Frenz, E. D. Jansen, G. D. Noojin, S. J. Diggs, J. Noack, A. Vogel, B. A. Rockwell, “Shock wave and cavitation bubble measurements of ultra-short pulse laser-induced breakdown in water,” in Laser Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 437–448 (1996). [CrossRef]
  40. R. W. Ebbers, I. L. Dunsky, “Retinal damage thresholds for multiple pulse lasers,” Aerosp. Med. 44, 317–318 (1973). [PubMed]
  41. ANSI Standard Z136.1-1993, American National Standard for the Safe Use of Lasers (American National Standards Institute, New York, 1993).
  42. W. T. Ham, H. A. Mueller, A. I. Goldman, B. E. Newman, L. M. Holland, T. Kuwabara, “Ocular hazards from picosecond pulses of Nd:YAG laser radiation,” Science 185, 362–363 (1974). [CrossRef] [PubMed]
  43. D. Sliney, M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum, New York, 1980), pp. 1, 84.
  44. A. Vogel, “Non-linear Absorption: Intraocular Microsurgery and Laser Lithotripsy,” to be published in Phys. Med. & Biol.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited