OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 9 — Mar. 20, 1997
  • pp: 1882–1888

Efficient continuous-wave frequency doubling of a tunable CO2 laser in AgGaSe2

S. Ya. Tochitsky, V. O. Petukhov, V. A. Gorobets, V. V. Churakov, and V. N. Jakimovich  »View Author Affiliations


Applied Optics, Vol. 36, Issue 9, pp. 1882-1888 (1997)
http://dx.doi.org/10.1364/AO.36.001882


View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Second-harmonic output at 4.6–5.5 µm of the order of 6 m W with a 0.12% external conversion efficiency has been obtained by pumping a AgGaSe2 crystal with a low-power cw CO2 laser. The surface damage threshold of AgGaSe2 for cw radiation was found to be inside the limit of 33–45 kW/cm2 in the 9.2–10.8-µm wavelength region. Another important limitation of the pump power connected with a thermal lensing effect in crystal was determined experimentally. A comparison was made of AgGaSe2 and ZnGeP2 crystals as materials suitable for the efficient generation of the second harmonic of cw CO2 laser radiation.

© 1997 Optical Society of America

History
Original Manuscript: January 2, 1996
Revised Manuscript: June 20, 1996
Published: March 20, 1997

Citation
S. Ya. Tochitsky, V. O. Petukhov, V. A. Gorobets, V. V. Churakov, and V. N. Jakimovich, "Efficient continuous-wave frequency doubling of a tunable CO2 laser in AgGaSe2," Appl. Opt. 36, 1882-1888 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-9-1882


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Wells, D. A. Jennings, A. G. Maki, “Improved deuterium bromide 1-0 band molecular constants from heterodyne frequency measurements,” J. Mol. Spectrosc. 107, 48–61 (1984). [CrossRef]
  2. D. A. Russel, R. Ebert, “Efficient generation and heterodyne detection of 4.75-µm light with second-harmonic generation,” Appl. Opt. 32, 6638–6644 (1993). [CrossRef]
  3. A. J. Mannucci, “Heterodyne spectroscopy of carbon monoxide lines perturbed by hydrogen and helium,” J. Chem. Phys. 95, 7795–7802 (1991). [CrossRef]
  4. J. Henningsen, S. A. Trushin, T. Mogelberg, M. Hammerich, “Second harmonic and sum-frequency generation in AgGaSe2 with tunable CO2 lasers,” Appl. Phys. B 61, 291–299 (1995). [CrossRef]
  5. J.-J. Zondy, “Experimental investigation of single and twin AgGaSe2 crystals for cw 10.2 µm SHG,” Opt. Commun. 119, 320–326 (1995). [CrossRef]
  6. A. Delahaigue, C. Thiebeaux, P. Jouve, “A monochromatic and frequency stabilized cw source in the 5 µm region obtained by doubling the frequencies of a cw laser in tellurium,” Appl. Phys. 24, 21–22 (1981). [CrossRef]
  7. G. J. Ernst, W. J. Witteman, “Second-harmonic generation in proustite with a cw CO2 laser,” IEEE J. Quantum Electron. QE-8, 382–383 (1972). [CrossRef]
  8. G. C. Bhar, S. Das, K. L. Vodopyanov, “Nonlinear optical laser devices using GaSe,” Appl. Phys. B 61, 187–190 (1995). [CrossRef]
  9. N. Menyuk, G. W. Iseler, A. Mooradian, “High-efficiency high-average-power second-harmonic generation with CdGeAs2,” Appl. Phys. Lett. 29, 422–424 (1976). [CrossRef]
  10. Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyryanov, I. I. Ipolitov, A. N. Morozov, A. V. Sosnin, G. S. Khmel’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984). [CrossRef]
  11. L. A. Gordon, R. C. Eckardt, R. L. Byer, “Investigation of diffusion-bonded stacked GaAs for infrared quasi-phase-matched parametric oscillation,” in Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, N. Peyghambarian, H. Everitt, R. C. Eckardt, D. D. Lowenthal, eds., Proc. SPIE2145, 316–326 (1994). [CrossRef]
  12. G. D. Boyd, H. M. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972). [CrossRef]
  13. R. S. Feigelson, R. K. Route, R. J. Raymakers, M. M. Choy, “Elimination of optical scattering defects in AgGaS2 and AgGaSe2,” J. Cryst. Growth 33, 239–245 (1976). [CrossRef]
  14. R. S. Feigelson, R. K. Route, “Improved yield of Bridgman grown AgGaSe2 crystals using shaped crucibles,” J. Cryst. Growth 104, 789–792 (1990). [CrossRef]
  15. R. S. Feigelson, R. K. Route, R. J. Raymakers, “Growth of nonlinear crystals for nonlinear conversion,” Prog. Cryst. Growth Charact. 20, 115–160 (1990). [CrossRef]
  16. R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillator using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986). [CrossRef]
  17. R. C. Eckardt, Y. X. Fan, R. L. Byer, R. K. Route, R. S. Feigelson, J. van der Laan, “Efficient second harmonic generation of 10-µm radiation in AgGaSe2,” Appl. Phys. Lett. 47, 786–788 (1985). [CrossRef]
  18. V. V. Badikov, V. B. Laptev, V. L. Panyutin, E. A. Ryabov, G. S. Shevyrddyaeva, O. B. Scherbina, “Growth and optical properties on nonlinear silver selenogallate crystals,” Sov. J. Quantum Electron. 22, 722–724 (1992). [CrossRef]
  19. H. Kildal, J. C. Mikkelsen, “The nonlinear optical coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9, 315–318 (1973). [CrossRef]
  20. G. C. Bhar, S. Das, U. Chatterjee, A. M. Rudra, R. S. Feigelson, R. K. Route, “Evaluation of temperature-dependent nonlinear devices,” J. Phys. D 27, 231–234 (1994). [CrossRef]
  21. V. A. Gorobets, V. O. Petukhov, S. Ya. Tochitsky, V. V. Churakov, V. N. Jakimovich, G. D. Boyd, A. A. Fomin, “Second harmonic conversion of a cw CO2 laser in AgGaSe2,” in Technical Digest of the 15th International Conference on Coherent and Nonlinear Optics, Vol. 2, N. Koroteev, ed., (Scientific Center of Russia, St. Petersburg, Russia, 1995), pp. 235–236.
  22. U. Simon, S. Waltman, I. Loa, F. K. Tittel, L. Hollberg, “Eternal-cavity difference-frequency source near 3.2 µm based on combining a tunable diode laser with a diode-pumped Nd:YAG laser in AgGaS2,” J. Opt. Soc. Am. B 12, 323–327 (1995). [CrossRef]
  23. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  24. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, “Nonlinear optical properties of crystals,” in Handbook of Nonlinear Crystals, A. E. Siegman, ed. (Springer-Verlag, Berlin, 1991), pp. 53–127. [CrossRef]
  25. G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987). [CrossRef]
  26. B. C. Ziegler, K. L. Schepler, “Transmission and damage-threshold measurements in AgGaSe2 at 2.1 µm,” Appl. Opt. 30, 5077–5080 (1991). [CrossRef] [PubMed]
  27. Z. Y. Ou, H. J. Kimble, “Enhanced conversion efficiency for harmonic generation with double resonance,” Opt. Lett. 18, 1053–1055 (1993). [CrossRef] [PubMed]
  28. P. K. Cheo, “Frequency synthesized and continuously tunable IR laser sources in 9–11 µm,” IEEE J. Quantum Electron. QE-20, 700–709 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited