OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 9 — Mar. 20, 1997
  • pp: 1940–1951

Detection techniques for validating Doppler estimates in heterodyne lidar

Barry J. Rye and R. Michael Hardesty  »View Author Affiliations


Applied Optics, Vol. 36, Issue 9, pp. 1940-1951 (1997)
http://dx.doi.org/10.1364/AO.36.001940


View Full Text Article

Enhanced HTML    Acrobat PDF (419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the ability of detection techniques based on the likelihood ratio to discriminate between heterodyne lidar Doppler estimates at low signal levels using examples generated by simulation. The distinction between estimates that are regarded as acceptable and as spurious is based on the Cramer–Rao lower bound. The conditional false alarm probability, which ordinarily describes recording detection of a signal when none is present, is then found to be an approximate upper bound on the probability of selection of a spurious estimate. The method is superior theoretically to similar techniques based on detection functions other than the likelihood ratio. The likelihood ratio also provides a basis for reprocessing rejected data in the light of contextual information provided by those estimates that are accepted.

© 1997 Optical Society of America

History
Original Manuscript: June 3, 1996
Revised Manuscript: September 23, 1996
Published: March 20, 1997

Citation
Barry J. Rye and R. Michael Hardesty, "Detection techniques for validating Doppler estimates in heterodyne lidar," Appl. Opt. 36, 1940-1951 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-9-1940


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in Doppler lidar. I. Incoherent spectral accumulation and the Cramer-Rao bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993). [CrossRef]
  2. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in Doppler lidar. II. Incoherent correlogram accumulation,” IEEE Trans. Geosci. Remote Sensing 31, 28–35 (1993). [CrossRef]
  3. P. T. May, R. G. Strauch, “An examination of some algorithms for spectral moment estimation,” J. Atmos. Ocean. Technol. 6, 731–735 (1989). [CrossRef]
  4. D. A. Merritt, “A statistical averaging method for wind profiler Doppler spectra,” J. Atmos. Ocean. Technol. 12, 985–995 (1995). [CrossRef]
  5. B. J. Rye, R. M. Hardesty, “Cramer-Rao lower bound-limited Doppler estimation using discrimination,” in Proceedings of the Seventh Conference on Coherent Laser Radar Applications and Technology, (Commission National for Education and Science, Paris, 1993), pp. 217–220.
  6. B. J. Rye, R. M. Hardesty, “Limits on Doppler lidar detectabilityand precision,” presented at the European Space Agency Doppler Wind Lidar Workshop, Noordwijk, Netherlands, September, 1995.
  7. E. S. Chornoboy, “Optimal mean velocity estimation for Doppler weather radars,” IEEE Trans. Geosci. Remote Sensing 31, 575–586 (1993). [CrossRef]
  8. D. S. Zrnic, “Estimation of spectral moments for weather echoes,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979). [CrossRef]
  9. R. G. Frehlich, M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar,” J. Atmos. Ocean. Technol. 11, 1217–1230 (1994). [CrossRef]
  10. B. J. Rye, R. M. Hardesty, “Spectral matched filters in coherent laser radar,” J. Mod. Opt. 41, 2131–2144 (1994). [CrossRef]
  11. R. G. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Ocean. Technol. 14, 54–75 (1997). [CrossRef]
  12. H. L. van Trees, Detection, Estimation, and Modulation Theory. Part I: Detection, Estimation, and Linear Modulation Theory (Wiley, New York, 1968).
  13. M. J. Levin, “Power spectrum parameter estimation,” IEEE Trans. Inf. Theory IT-11, 100–107 (1965). [CrossRef]
  14. B. J. Rye, “Return power estimation for targets spread in range,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1995), pp. 202–205.
  15. J. R. Anderson, “High performance velocity estimators for coherent laser radars,” in Coherent Laser Radar: Applications and Technology, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1991).
  16. B. J. Rye, R. M. Hardesty, “Time series identification and Kalman filtering techniques for Doppler lidar velocity estimation,” Appl. Opt. 28, 879–891 (1989). [CrossRef] [PubMed]
  17. F. R. Arams, E. W. Sard, B. J. Peyton, F. P. Pace, “Infrared 10.6-micron heterodyne detection with gigahertz IF capability,” IEEE J. Quantum Electron. QE-3, 484–492 (1967). [CrossRef]
  18. A. Arcese, E. W. Trombini, “Variances of spectral parameters with a Gaussian shape,” IEEE Trans. Inf. Theory IT-17, 200–201 (1971). [CrossRef]
  19. B. J. Rye, “Comparative precision of distributed-backscatter Doppler lidars,” Appl. Opt. 34, 8341–8344 (1995). [CrossRef] [PubMed]
  20. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  21. R. G. Frehlich, M. J. Yadlowsky, “Performance of mean-frequency estimators for Doppler radar and lidar: corrigenda,” J. Atmos. Ocean. Technol. 12, 445–446 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited