OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 1 — Jan. 1, 1998
  • pp: 170–180

Fiber-Optic Probes with Improved Excitation and Collection Efficiency for Deep-UV Raman and Resonance Raman Spectroscopy

L. Shane Greek, H. Georg Schulze, Michael W. Blades, Charles A. Haynes, Karl-Friedrich Klein, and Robin F. B. Turner  »View Author Affiliations


Applied Optics, Vol. 37, Issue 1, pp. 170-180 (1998)
http://dx.doi.org/10.1364/AO.37.000170


View Full Text Article

Acrobat PDF (225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ability of ultraviolet resonance Raman spectroscopy (UVRRS) to determine structural, environmental, and analytical information concerning low-concentration aqueous biomolecules makes it a powerful bioanalytical and biophysical technique. Unfortunately, its utility has been limited by experimental requirements that preclude <i>in situ</i> or <i>in vivo</i> studies in most cases. We have developed the first high-performance fiber-optic probes suitable for long-term use in pulsed UVRRS applications in the deep- UV (DUV, 205–250 nm). The probes incorporate recently developed improved ultraviolet (IUV) fibers that do not exhibit the rapid solarization and throughput decay that previously hampered the use of optical fibers for delivering pulsed, DUV light. A novel 90° mirrored collection geometry is used to overcome the inner-filtering effects that plague flush-probe geometries. The IUV fibers are characterized with respect to their efficacy at transmitting pulsed, DUV laser light, and prototype probes are used to obtain pulsed UVRRS data of aromatic amino acids, proteins, and hormones at low concentrations with 205–240-nm pulsed excitation. Efficient probe geometries and fabrication methods are presented. The performance of the probes in examining resonance-enhanced Raman signals from absorbing chromophores is investigated, and the optimal excitation wavelength is shown to be significantly red-shifted from the maximum of the resonance Raman enhancement profile. Generally applicable procedures for determining optimal experimental conditions are also introduced.

© 1998 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(300.6450) Spectroscopy : Spectroscopy, Raman

Citation
L. Shane Greek, H. Georg Schulze, Michael W. Blades, Charles A. Haynes, Karl-Friedrich Klein, and Robin F. B. Turner, "Fiber-Optic Probes with Improved Excitation and Collection Efficiency for Deep-UV Raman and Resonance Raman Spectroscopy," Appl. Opt. 37, 170-180 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-1-170

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited