OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 1 — Jan. 1, 1998
  • pp: 84–92

Nanometer scale polarimetry studies using a near-field scanning optical microscope

E. B. McDaniel, S. C. McClain, and J. W. P. Hsu  »View Author Affiliations


Applied Optics, Vol. 37, Issue 1, pp. 84-92 (1998)
http://dx.doi.org/10.1364/AO.37.000084


View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a new technique that incorporates polarization modulation into near-field scanning optical microscopy (NSOM) for nanometer scale polarimetry studies. By using this technique, we can quantitatively measure the optical anisotropy of materials with both the high sensitivity of dynamic polarimetry and the high spatial resolution of NSOM. The magnitude and relative orientation of linear birefringence or linear dichroism are obtained simultaneously. To demonstrate the sensitivity and resolution of the microscope, we map out stress-induced birefringence associated with submicrometer defects at the fusion boundaries of SrTiO3 bicrystals. Features as small as 150 nm were imaged with a retardance sensitivity of ∼3 × 10-3 rad.

© 1998 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(180.5810) Microscopy : Scanning microscopy
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

History
Original Manuscript: June 16, 1997
Revised Manuscript: August 7, 1997
Published: January 1, 1998

Citation
E. B. McDaniel, S. C. McClain, and J. W. P. Hsu, "Nanometer scale polarimetry studies using a near-field scanning optical microscope," Appl. Opt. 37, 84-92 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-1-84


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. M. Frocht, Photoelasticity (Wiley, New York, 1941), Vol. 1, pp. 129–175.
  2. V. K. Gupta, J. A. Kornfield, A. Ferencz, G. Wegner, “Controlling molecular order in ‘Hairy Rod’ Langmuir–Blodgett films: a polarization modulation microscopy study,” Science 265, 940–942 (1994). [CrossRef] [PubMed]
  3. C.-Z. Ge, C.-C. Hsu, N.-B. Ming, “A study of dislocations generated by inclusions in gadolinium gallium garnet crystals by birefringence topography,” J. Cryst. Growth 142, 133–139 (1994);K. Maiwa, K. Tsukamoto, I. Sunagawa, C.-Z. Ge, N.-B. Ming, “Observation of screw and mixed dislocations in barium nitrate crystals by means of birefringence and x-ray topography,” J. Cryst. Growth 98, 590–594 (1989). [CrossRef]
  4. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991). [CrossRef] [PubMed]
  5. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31, 4563–4568 (1992). [CrossRef] [PubMed]
  6. E. Betzig, J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992). [CrossRef] [PubMed]
  7. E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993). [CrossRef] [PubMed]
  8. G. A. Valaskovic, M. Holton, G. H. Morrison, “Image contrast of dielectric specimens in transmission mode near-field scanning optical microscopy: imaging properties and tip artefacts,” J. Microsc. 179, 29–54 (1995). [CrossRef]
  9. J. Levy, V. Nikitin, J. M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D. D. Awschalom, “Spatiotemporal near-field spin microscopy in patterned magnetic heterostructures,” Phys. Rev. Lett. 76, 1948–1951 (1996);J. Levy, V. Nikitin, J. M. Kikkawa, D. D. Awschalom, N. Samarth, “Femtosecond near-field spin microscopy in digital magnetic heterostructures,” J. Appl. Phys. 79, 6095–6100 (1996). [CrossRef] [PubMed]
  10. E. B. McDaniel, J. W. P. Hsu, “Nanometer scale optical studies of twin domains and defects in lanthanum aluminate crystals,” J. Appl. Phys. 80, 1085–1093 (1996). [CrossRef]
  11. M. Vaez-Iravani, R. Toledo-Crow, “Pure linear polarization imaging in near field scanning optical microscopy,” Appl. Phys. Lett. 63, 138–140 (1993). [CrossRef]
  12. V. K. Gupta, J. A. Kornfield, “Polarization modulation laser scanning microscopy: a powerful tool to image molecular orientation and order,” Rev. Sci. Instrum. 65, 2823–2828 (1994). [CrossRef]
  13. R. A. Chipman, “Polarization analysis of optical systems,” Opt. Eng. 28, 90–99 (1989). [CrossRef]
  14. S. Y. Lu, R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994). [CrossRef]
  15. Hinds Instruments, Inc., Hillsboro, Ore.
  16. K. W. Hipps, G. A. Crosby, “Applications of the photoelastic modulator to polarization spectroscopy,” J. Phys. Chem. 83, 555–562 (1979);S. N. Jasperson, S. E. Schnatterly, “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Rev. Sci. Instrum. 40, 761–767 (1969). [CrossRef]
  17. T. C. Oakberg, Linear Birefringence and Optical Rotation, Application Note (Hinds Instruments, Inc., Hillsboro, Ore., 1993).
  18. T. C. Oakberg, “Modulated interference effects: use of photoelastic modulators with lasers,” Opt. Eng. 34, 1545–1550 (1995). [CrossRef]
  19. The extinction ratio measured in the far field depends on the N.A. of the objective used; some of these tip have extinction ratios of >1000:1 when measured with a N.A. = 0.28 or a N.A. = 0.55 objective lens.
  20. J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995);M. Lee, E. B. McDaniel, J. W. P. Hsu, “An impedance based noncontact feedback control system for scanning probe microscopes,” Rev. Sci. Instrum. 67, 1468–1471 (1996). [CrossRef]
  21. ThorLabs, Inc., Newton, N.J., part FPC030.
  22. Thorlabs Fiber Polarization Controller Product Description, 0482-D01 Rev. B (ThorLabs, Inc., Newton, N.J., 1994).
  23. Nikko Hitech Inc., San Jose, Calif.
  24. E. B. McDaniel, J. W. P. Hsu, “Measurement of strain associated with defects in SrTiO3 bicrystals using near-field scanning optical microscopy,” Mater. Res. Soc. Proc.474, pp. 91–98 (Materials Research Society, Pittsburgh, Pa., 1997); J. W. P. Hsu, E. B. McDaniel, R. A. Rao, C. B. Eom, “Microstructural defects in SrTiO3 bicrystals and their influence on YBa2Cu3O7 film growth and junction performance,” Mater. Res. Soc. Proc.474, pp. 131–136 (Materials Research Society, Pittsburgh, Pa., 1997).
  25. C. Traeholt, J. G. Wen, H. W. Zandbergen, Y. Shen, J. W. M. Hilgenkamp, “TEM investigation of YBa2Cu3O7 thin films on SrTiO3 bicrystals,” Phys. C 230, 425–434 (1994);J. W. Seo, B. Kabius, U. Dähne, A. Scholen, K. Urban, “TEM investigation of grain boundaries in YBa2Cu3O7 thin films grown on SrTiO3 bicrystal substrates,” Phys. C 245, 25–35 (1994). [CrossRef]
  26. E. B. McDaniel, J. W. P. Hsu, “Anomalous index contrast due to point source illumination in scanning optical microscopy,” J. Appl. Phys. 81, 2488–2491 (1997). [CrossRef]
  27. E. B. McDaniel, S. C. Gausepohl, C.-T. Li, M. Lee, J. W. P. Hsu, R. A. Rao, C. B. Eom, “Influence of SrTiO3 bicrystal microstructural defects on YBa2Cu3O7 grain-boundary Josephson junctions,” Appl. Phys. Lett. 70, 1882–1884 (1997). [CrossRef]
  28. J. F. Nye, “Natural and artificial double refraction: second-order effects,” in Physical Properties of Crystals (Clarendon, Oxford, UK, 1985), Chap. 13, pp. 243–254.
  29. F. Gervais, “Strontium titanate,” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), p. 1039.
  30. J. Reintjes, M. B. Schulz, “Photoelastic constants of selected ultrasonic delay-line crystals,” J. Appl. Phys. 39, 5254–5258 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited