OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 10 — Apr. 1, 1998
  • pp: 1770–1775

Speckle reduction in laser projection systems by diffractive optical elements

Lingli Wang, Theo Tschudi, Thorsteinn Halldórsson, and Pálmi R. Pétursson  »View Author Affiliations

Applied Optics, Vol. 37, Issue 10, pp. 1770-1775 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (316 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In laser projection systems the observer in the far field of the image points on the screen will recognize serious speckle noise. There are many methods to reduce or eliminate speckles in the near field by reducing or eliminating temporal or spatial coherence of the laser. But for the far field it is hardly possible to change the coherence properties of laser sources so that speckles will disappear. We propose a new method for eliminating speckles in the far field by using a diffractive optical element. The intensity modulation depth in the far-field speckle pattern can be reduced to a few percent while good beam quality is preserved.

© 1998 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(050.1970) Diffraction and gratings : Diffractive optics
(140.0140) Lasers and laser optics : Lasers and laser optics

Original Manuscript: August 7, 1997
Revised Manuscript: November 13, 1997
Published: April 1, 1998

Lingli Wang, Theo Tschudi, Thorsteinn Halldórsson, and Pálmi R. Pétursson, "Speckle reduction in laser projection systems by diffractive optical elements," Appl. Opt. 37, 1770-1775 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, Berlin, 1975), pp. 9–76. [CrossRef]
  2. N. George, A. Jian, “Speckle reduction using multiple tones of illumination,” Appl. Opt. 12, 1202–1212 (1973). [CrossRef] [PubMed]
  3. S. Jutamulia, T. Asakura, H. Ambar, “Reduction of coherent noise using various artificial incoherent sources,” Optik 70, 52–57 (1985).
  4. B. Dingel, S. Kawata, S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).
  5. K. I. Sato, K. Asatani, “Speckle noise reduction in fiber optic analog video transmission using semiconductor laser diodes,” IEEE Trans. Commun. COM-29, 1017–1024 (1981). [CrossRef]
  6. C. Saloma, S. Kawata, S. Minami, “Laser-diode microscope that generates weakly speckled images,” Opt. Lett. 15, 203–205 (1990). [CrossRef] [PubMed]
  7. B. Dingel, S. Kawata, “Speckle-free image in a laser-diode microscope by using the optical feedback effect,” Opt. Lett. 18, 549–551 (1993). [CrossRef] [PubMed]
  8. F. V. Kowalski, P. D. Hale, S. J. Shattil, “Broadband continuous-wave laser,” Opt. Lett. 13, 622–624 (1988). [CrossRef] [PubMed]
  9. P. I. Richter, T. W. Hänsch, “Diode lasers in external cavities with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991). [CrossRef]
  10. S. Lowenthal, D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. 61, 847–851 (1971). [CrossRef]
  11. T. McKechnie, “Reduction of speckle by a moving aperture-first order statistics,” Opt. Commun. 13, 35–39 (1975). [CrossRef]
  12. H. Ambar, Y. Aoki, N. Takai, T. Asakura, “Mechanism of speckle reduction in laser-microscope images using a rotating optical fiber,” Appl. Phys. B 38, 71–78 (1985). [CrossRef]
  13. H. Kiemle, U. Wolff, “Application de cristaux liquides en holographie optique,” Opt. Commun. 3, 26–28 (1971). [CrossRef]
  14. W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Son. Ultrason. SU-14, 123–134 (1967). [CrossRef]
  15. Y. Imai, Y. Ohtsuka, “Laser speckle reduction by ultrasonic modulation,” Opt. Commun. 27, 18–22 (1978). [CrossRef]
  16. E. G. Rawson, A. B. Nafarrate, R. E. Norton, J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66, 1290–1294 (1976). [CrossRef]
  17. T. Iwai, T. Asakura, “Speckle reduction in coherent information processing,” Proc. IEEE 84, 765–781 (1996). [CrossRef]
  18. J. R. Fienup, “Iterative method applied to image reconstruction and to computer-generated holograms,” Opt. Eng. 19, 297–305 (1980). [CrossRef]
  19. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for determination of phase from image and diffraction plane pictures,” Optik 35, 237–266 (1972).
  20. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976). [CrossRef]
  21. D. Daly, S. M. Hodson, M. C. Hutley, “Fan-out grating with a continuous profile,” Opt. Commun. 82, 183–187 (1991). [CrossRef]
  22. B. Goebel, L. L. Wang, T. Tschudi, “Multilayer technology for diffractive optical elements,” Appl. Opt. 35, 4490–4493 (1996). [CrossRef] [PubMed]
  23. D. Prongué, H. P. Herzig, R. Dändliker, M. T. Gate, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31, 5706–5711 (1992). [CrossRef]
  24. M. Larsson, M. Ekberg, F. Nikolajeff, S. Hård, “Successive development optimization of resist kinoforms manufactured with direct-writing, electron-beam lithography,” Appl. Opt. 33, 1176–1179 (1994). [CrossRef] [PubMed]
  25. M. T. Gale, M. Rossi, H. Schütz, P. Ehbets, H. P. Herzig, D. Prongué, “Continuous-relief diffractive optical elements for two-dimensional array generation,” Appl. Opt. 32, 2526–2533 (1993). [CrossRef] [PubMed]
  26. A. Vasara, M. Taghizadeh, J. Turunen, J. Westerholm, E. Noponen, H. Ichikawa, J. M. Miller, T. Jaakkola, S. Kuisma, “Binary surface-relief gratings for array illumination in digital optics,” Appl. Opt. 31, 3320–3336 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited