OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 10 — Apr. 1, 1998
  • pp: 1784–1795

High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility

Jeffrey A. Koch, Otto L. Landen, Troy W. Barbee, Peter Celliers, Luiz B. Da Silva, Sharon G. Glendinning, Bruce A. Hammel, Dan H. Kalantar, Charles Brown, John Seely, Guy R. Bennett, and Warren Hsing  »View Author Affiliations


Applied Optics, Vol. 37, Issue 10, pp. 1784-1795 (1998)
http://dx.doi.org/10.1364/AO.37.001784


View Full Text Article

Enhanced HTML    Acrobat PDF (228 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multi-kilo-electron-volt x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF). However, laser energies and plasma characteristics imply that x-ray microscopy will be more challenging at NIF than at existing facilities. We use analytical estimates and numerical ray tracing to investigate several instrumentation options in detail, and we conclude that near-normal-incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-ray microscopy at NIF and similar large facilities. Apertured Kirkpatrick–Baez microscopes using multilayer mirrors may also be good options, particularly for applications requiring one-dimensional imaging over narrow fields of view.

© 1998 Optical Society of America

OCIS Codes
(080.1010) Geometric optics : Aberrations (global)
(080.2710) Geometric optics : Inhomogeneous optical media
(340.7460) X-ray optics : X-ray microscopy

History
Original Manuscript: September 2, 1997
Revised Manuscript: September 2, 1997
Published: April 1, 1998

Citation
Jeffrey A. Koch, Otto L. Landen, Troy W. Barbee, Peter Celliers, Luiz B. Da Silva, Sharon G. Glendinning, Bruce A. Hammel, Dan H. Kalantar, Charles Brown, John Seely, Guy R. Bennett, and Warren Hsing, "High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility," Appl. Opt. 37, 1784-1795 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-10-1784


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933–4024 (1995). [CrossRef]
  2. P. Amendt, S. G. Glendinning, B. A. Hammel, R. G. Hay, L. J. Suter, “Witness foam-ball diagnostic for Nova hohlraum time-dependent drive asymmetry,” Rev. Sci. Instrum. 66, 785–787 (1995). [CrossRef]
  3. I. Uschman, E. Förster, H. Nishimura, K. Fujita, Y. Kato, S. Nakai, “Temperature mapping of compressed fusion pellets obtained by monochromatic imaging,” Rev. Sci. Instrum. 66, 734–736 (1995). [CrossRef]
  4. B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid-density material,” Phys. Fluids B 5, 2259–2264 (1993). [CrossRef]
  5. L. B. Da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, G. Chiu, “Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar),” Phys. Rev. Lett. 78, 483–486 (1997). [CrossRef]
  6. B. A. Remington, S. G. Glendinning, R. J. Wallace, S. Rothman, R. Morales, “Wölter x-ray microscope characterization measurements on Nova,” Rev. Sci. Instrum. 63, 5080–5082 (1992). [CrossRef]
  7. F. J. Marshall, Q. Su, “Quantitative measurements with x-ray microscopes in laser-fusion experiments,” Rev. Sci. Instrum. 66, 725–727 (1995). [CrossRef]
  8. J. H. Underwood, A. C. Thompson, J. B. Kortright, K. C. Chapman, D. Lunt, “Focusing x-rays to a 1 μm spot using elastically bent, graded multi-layer coated mirrors,” Rev. Sci. Instrum. 67, 1–6 (1996). [CrossRef]
  9. C. Brown, J. Seely, U. Feldman, S. Obenschain, S. Bodner, C. Pawley, K. Gerber, V. Serlin, J. Sethian, Y. Aglitskiy, T. Lehecka, G. Holland, “X-ray imaging of targets irradiated by the Nike KrF laser,” Rev. Sci. Instrum. 68, 1099–1102 (1997). [CrossRef]
  10. M. Dirksmöller, O. Rancu, I. Uschman, P. Renaudin, C. Chenais-Popovics, J. C. Gauthier, E. Förster, “Time resolved x-ray monochromatic imaging of a laser-produced plasma at 0.6635 nm wavelength,” Opt. Commun. 118, 379–387 (1995). [CrossRef]
  11. E. Förster, P. Gibbon, M. Dirksmöller, “Two-bent-crystal schemes for x-ray imaging of ultra-dense plasmas,” Exp. Tech. Phys. 42, 19–24 (1996).
  12. H. Wölter, “Mirror systems with grazing incidence as image-forming optics for x-rays,” Ann. Phys. (Paris) 10, 94–114 (1952); available in English as Lawrence Livermore National Laboratory Report UCRL-TRANS-10971 (Lawrence Livermore National Laboratory, Livermore, Calif., 1975).
  13. R. Kodama, N. Ikeda, Y. Kato, Y. Katori, T. Iwai, K. Takeshi, “Development of an advanced Kirkpatrick–Baez microscope,” Opt. Lett. 21, 1321–1323 (1996). [CrossRef] [PubMed]
  14. M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1964).
  15. T. Harada, T. Kita, “Mechanically ruled aberration-corrected concave gratings,” Appl. Opt. 19, 3987–3993 (1980). [CrossRef] [PubMed]
  16. S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, D. A. Hammer, A. Ya. Faenov, V. A. Dyakin, T. A. Pikuz, “High-luminosity monochromatic x-ray backlighting using an incoherent plasma source to study extremely dense plasmas,” Rev. Sci. Instrum. 68, 740–744 (1997). [CrossRef]
  17. E. Förster, K. Gäbel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Particle Beams 9, 135–148 (1991). [CrossRef]
  18. The Kα from a hot laser-produced plasma generally consists of many individual components from different ionization stages; see, for example, B. Yaakobi, F. J. Marshall, D. K. Bradley, J. A. Delettrez, R. S. Craxton, R. Epstein , “Signatures of target performance and mixing in titanium-doped target implosions on Omega,” Phys. Plasmas 4, 3021–3030 (1977).
  19. The predicted Mn Heα line width (3PJ = 1* - 1SJ = 0 component) is based on an electron temperature of 1 keV and an electron density of 1022 cm-3.
  20. J. F. Seely, M. P. Kowalski, W. R. Hunter, G. Gutman, “Reflectance of a wideband multilayer x-ray mirror at normal and grazing incidences,” Appl. Opt. 35, 4408–4412 (1996). [CrossRef] [PubMed]
  21. H. T. Yamada, B. L. Henke, J. C. Davis, “The high energy x-ray response of some useful crystal analyzers,” Lawrence Berkeley Laboratory Report LBL-22800 (Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).
  22. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions,” At. Data Nucl. Data Tables 54(2), 181–342 (1993). [CrossRef]
  23. N. G. Alexandropolous, G. C. Cohen, “Crystals for stellar spectrometers,” Appl. Spectrosc. 28, 155–164 (1974). [CrossRef]
  24. J. L. Bourgade, O. Cabourdin, O. Delage, D. Gilles, D. Juraszek, J. L. Miquel, O. Peyrusse, C. Reverdin, R. Sauneuf, D. Schirmann, B. Guilpart, R. Marmoret, A. Rouyer, “Monochromatic penumbral imaging diagnostic development for argon filled microballoon imploded by powerful laser,” Plasma Phys. Rep. 20, 107–112 (1994).
  25. R. L. Kelly, “Atomic and ionic spectrum lines below 2000 Å; hydrogen through krypton,” J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987).
  26. J. B. Kortright, “Characteristic x-ray energies,” in X-ray Data Booklet (Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).
  27. J. H. Underwood, “Crystal and multi-layer dispersive elements,” in X-ray Data Booklet (Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, Calif., 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited