OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 10 — Apr. 1, 1998
  • pp: 1814–1819

Apertureless Near-Field Optical Microscopy: Influence of the Illumination Conditions on the Image Contrast

Pierre-Michel Adam, Pascal Royer, Reda Laddada, and Jean-Louis Bijeon  »View Author Affiliations


Applied Optics, Vol. 37, Issue 10, pp. 1814-1819 (1998)
http://dx.doi.org/10.1364/AO.37.001814


View Full Text Article

Acrobat PDF (700 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a hybrid microscope composed of an apertureless scanning near-field optical microscope and a commercial atomic force microscope. We discuss the optical origin of the near-field images of a test sample. We show that the optical images have a sharp contrast that depends on the illumination parameters: the state of polarization and the angle of incidence of the incident light.

© 1998 Optical Society of America

OCIS Codes
(110.1220) Imaging systems : Apertures
(110.2960) Imaging systems : Image analysis
(170.0180) Medical optics and biotechnology : Microscopy
(180.5810) Microscopy : Scanning microscopy
(260.5430) Physical optics : Polarization

Citation
Pierre-Michel Adam, Pascal Royer, Reda Laddada, and Jean-Louis Bijeon, "Apertureless Near-Field Optical Microscopy: Influence of the Illumination Conditions on the Image Contrast," Appl. Opt. 37, 1814-1819 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-10-1814


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image resolution with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometer scale,” Science 251, 1468–1470 (1991).
  3. R. C. Reddick, R. J. Warmack, and T. L. Ferrell, “New form of scanning optical microscopy,” Phys. Rev. B 39, 767–770 (1989).
  4. D. Courjon, K. Sarayeddine, and M. Spajer, “Scanning tunneling optical microscopy,” Opt. Commun. 71, 23–28 (1989).
  5. F. De Fornel, L. Salomon, P. Adam, E. Bourillot, J. P. Goudonnet, and M. Nevière, “Resolution of the photon scanning tunneling microscope: influence of physical parameters,” Ultramicroscopy 42–44, 422–429 (1992).
  6. H. K. Wickramasinghe and C. C. Williams, “Apertureless near-field optical microscope,” U.S. patent 4,947,034 (7 August 1989).
  7. T. Kataoka, K. Endo, Y. Oshikane, H. Inoue, K. Inagaki, Y. Mori, H. An, O. Kobayakawa, and A. Izumi, “Development of a scanning near-field optical microscope with a probe consisting of a small spherical protrusion,” Ultramicroscopy 63, 219–225 (1996).
  8. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
  9. R. Bachelot, P. Gleyzes, and A. C. Boccara, “Near field optical microscopy by local perturbation of a diffraction spot,” Microsc. Microanal. Microstruct. 5, 389–397 (1995).
  10. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
  11. Y. Martin, F. Zenhausern, and H. K. Wickramasinghe, “Scattering spectroscopy of molecules at nanometer resolution,” Appl. Phys. Lett. 68, 2475–2477 (1996).
  12. R. B. G. de Hollander, N. F. van Hulst, and R. P. H. Kooyman, “Near field plasmon and force microscopy,” Ultramicroscopy 57, 263–269 (1995).
  13. P. Bauer, B. Hecht, and C. Rossel, “Piezoresistive cantilevers as optical sensors for scanning near-field microscopy,” Ultramicroscopy 61, 127–130 (1995).
  14. M. Castagne, C. Prioleau, and J. P. Fillard, “Optical properties of silicon-nitride atomic-force-microscopy tips in scanning tunneling optical microscopy: experimental study,” Appl. Opt. 34, 703–708 (1995).
  15. X. Bouju, A. Dereux, J. P. Vigneron, and C. Girard, “Scattering of electromagnetic waves by silicon-nitride tips,” J. Vac. Sci. Technol. B 14, 816–819 (1996).
  16. M. Isaacson, J. Cline, and H. Barshatzky, “Resolution in near-field optical microscopy,” Ultramicroscopy 47, 15–22 (1992).
  17. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
  18. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artefacts in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).
  19. R. Carminati, A. Madrazo, and M. Nieto-Vesperinas, “Optical content and resolution of near-field optical images: influence of the operating mode,” J. Appl. Phys. 82, 501–509 (1997).
  20. A. Madrazo and M. Nieto-Vesperinas, “Reconstruction of corrugated dielectric surfaces with a model of a photon scanning tunneling microscope: influence of the tip on the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997).
  21. O. J. F. Martin, C. Girard, and A. Dereux, “Dielectric versus topographic contrast in near-field microscopy,” J. Opt. Soc. Am. A 13, 1801–1808 (1996).
  22. H. Furukawa and S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multiple scattering,” Opt. Commun. 132, 170–178 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited