OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 10 — Apr. 1, 1998
  • pp: 1873–1882

W/C, W/Ti, Ni/Ti, and Ni/V Multilayers for the Soft-X-ray Range: Experimental Investigation with Synchrotron Radiation

Hans-Christoph Mertins, Franz Schäfers, Hans Grimmer, Daniel Clemens, Peter Böni, and Michael Horisberger  »View Author Affiliations

Applied Optics, Vol. 37, Issue 10, pp. 1873-1882 (1998)

View Full Text Article

Acrobat PDF (260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An experimental investigation of W/C, W/Ti, Ni/Ti, and Ni/V multilayers is presented that uses synchrotron radiation in the soft-x-ray energy region between 100 and 1500 eV with special emphasison the water window. The multilayers were designed as normal incidence reflectors and for polarimetry purposes around the Brewster angle. Both reflection and transmission multilayers were prepared for use as linear polarizers and phase retarders, respectively, to produce or analyze circularly polarized light. Their period was optimized to achieve maximum reflectance at the 1<i>s</i> absorption edge of C (284 eV) and the 2<i>p</i> edges of Ti (454 eV) and V (512 eV), respectively. At these edges the multilayers show an enhancement of reflectance and energy resolution that is in accordance with theoretical calculations.

© 1998 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.4170) Optical devices : Multilayers
(350.5610) Other areas of optics : Radiation

Hans-Christoph Mertins, Franz Schäfers, Hans Grimmer, Daniel Clemens, Peter Böni, and Michael Horisberger, "W/C, W/Ti, Ni/Ti, and Ni/V Multilayers for the Soft-X-ray Range: Experimental Investigation with Synchrotron Radiation," Appl. Opt. 37, 1873-1882 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. K. Ray-Chaudhuri, W. Ng, S. Liang, S. Singh, J. T. Welnak, J. P. Wallace, C. Capasso, F. Cerrina, G. Margaritondo, J. H. Underwood, J. B. Kortright, and C. C. Perrera, “First results of microscopy from a scanning photoemission microscope with a submicron probe size,” J. Vac. Sci. Technol. A 11, 2324–2329 (1993).
  2. L. Golub, M. Herant, K. Kalata, I. Lovas, G. Nystrom, F. Pardo, E. Spiller, and J. Wilczynski, “Sub-arcsecond observations of the solar x-ray corona,” Nature (London) 344, 842–844 (1990).
  3. A. M. Hawryluk and N. M. Ceglio, “Wavelength considerations in soft x-ray projection lithography,” Appl. Opt. 32, 7062–7067 (1993).
  4. N. N. Salashchenko, Y. Y. Platonov, and S. Y. Zuev, “Multilayer x-ray optics for synchrotron radiation,” Nucl. Instrum. Methods A 359, 114–120 (1995).
  5. J. B. Kortright, H. Kimura, V. Nikitin, K. Mayama, M. Yamamoto, and M. Yanaghira, “Soft x-ray (97-eV) phase retardation using transmission multilayers,” Appl. Phys. Lett. 60, 2963–2965 (1992).
  6. S. DiFonzo, R. Müller, W. Jark, A. Gaupp, F. Schäfers, and J. H. Underwood, “Multilayer transmission phase shifters for the carbon K edge and the water window,” Rev. Sci. Instrum. 66, 1513–1516 (1995).
  7. C. Montcalm, P. A. Kearney, J. M. Slaughter, B. T. Sullivan, M. Chaker, H. Pepin, and C. M. Falco, “Survey of Ti-, B-, and Y-based soft-x-ray-extreme ultraviolet multilayer mirrors for the 2- to 12-nm wavelength region,” Appl. Opt. 35, 5134–5147 (1996).
  8. E. Spiller, ed., Soft X-Ray Optics, Vol. PM15 of SPIE Monographs and Handbooks Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994).
  9. D. G. Stearns, R. S. Rosen, and S. P. Vernon, “Multilayer mirror technology for soft x-ray projection lithography,” Appl. Opt. 31, 6952–6960 (1993).
  10. G. Gutman, “High-performance Mo/Si and W/B4C multilayer mirrors for soft x-ray imaging optics,” J. X-Ray. Sci. Technol. 4, 142–150 (1994).
  11. K. M. Skulina, C. S. Alford, R. M. Bionta, D. M. Makowiecki, E. M. Gullikson, R. Soufli, J. B. Kortright, and J. H. Underwood, “Molybdenum/beryllium multilayer mirrors for normal incidence in the extreme ultraviolet,” Appl. Opt. 34, 3727–3730 (1995).
  12. D. G. Stearns, R. S. Rosen, and S. P. Vernon, “Normal-incidence x-ray mirror for 7 nm,” Opt. Lett. 16, 1283–1285 (1991).
  13. A. D. Akhsakhalyan, N. N. Kolachevsky, M. M. Mitropolsky, E. N. Ragozin, N. N. Salashchenko, and V. A. Slemzin, “Fabrication and investigation of imaging normal-incidence multilayer mirrors with a narrow band reflection in the range λ ~ 4.5 nm,” Phys. Scr. 48, 516–520 (1993).
  14. I. V. Kozhevnikov, A. I. Fedorenko, V. V. Kondratenko, Y. P. Pershin, S. A. Yulin, E. N. Zubarev, H. A. Padmore, K. C. Cheung, G. E. van Dorssen, M. Roper, L. L. Balakireva, R. V. Serov, and A. V. Vinogradov, “Synthesis and measurement of normal incidence x-ray multilayer mirrors for a photon energy of 390 eV,” Nucl. Instrum. Methods A 345, 594–602 (1994).
  15. M. Yamamoto and T. Namioka, “Layer-by-layer design method for soft-x-ray multilayers,” Appl. Opt. 31, 1622–1630 (1992).
  16. A. E. Rosenbluth, “Computer search for layer materials that maximize the reflectivity of x-ray multilayers,” Rev. Phys. Appl. 23, 1599–1621 (1988).
  17. E. Spiller, Multilayer Optics for Soft X Rays, (Plenum, New York, 1986).
  18. S. Di Fonzo and W. Jark, “A quarter waveplate for the polarization analysis close to the carbon K edge,” Rev. Sci. Instrum. 63, 1375–1378 (1992).
  19. H. E. Bennet and J. M. Bennet, Physics of Thin Films (Academic, New York, 1969), Vol. 4.
  20. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1–92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
  21. F. Schäfers and M. Krumrey, “REFLEC—a program to calculate soft x-ray optical elements and synchrotron radiation beamlines,” Tech. Rep. BESSY TB 201 (Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, m.b.h., Berlin, 1996).
  22. P. F. Miceli, D. A. Neumann, and H. Zabel, “X-ray refractive index: a tool to determine the average composition in multilayer structures,” Appl. Phys. Lett. 48, 24–26 (1986).
  23. F. Schäfers, H.-Ch. Mertins, F. Schmolla, I. Packe, N. N. Salashchenko, and E. A. Shamov, “Cr/Sc multilayers for the soft x-ray range,” Appl. Opt. 37, 719–728 (1998).
  24. W. Jark and J. Stöhr, “A high-vacuum triple-axis-diffractometer for soft x-ray scattering experiments,” Nucl. Instrum. Methods A 266, 654–658 (1988).
  25. Ch. Jung, ed., “Research at BESSY,” A Users Handbook (Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung, m.b.H., Berlin, 1995).
  26. For further information on the multilayer survey, see http://www-cxto.lbl.gov/multilayer/survey.html.
  27. F. Schäfers, A. Furuzawa, K. Yamashita, M. Watanabe, and J. Underwood, “Beam splitting and polarizing properties of Cr/C multilayers close to the carbon K-edge,” in Physics of X-Ray Multilayer Structures, Vol. 6 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 155.
  28. F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, “2p x-ray absorption of 3d transition-metal compounds: an atomic multiplet description including crystal field,” Phys. Rev. B 42, 5459–5468 (1990).
  29. H. Nagata, “Nickel/vanadium and nickel/titanium multilayers for x-ray optics,” Jpn. J. Appl. Phys. 29, 1215–1219 (1990).
  30. M. Maaza, B. Farnoux, F. Samuel, C. Sella, F. Wehling, F. Bridou, M. Groos, B. Pardo, and G. Foulet, “Reduction of the interfacial diffusion in Ni-Ti neutron-optics multilayers by carburation of the Ni-Ti interfaces,” J. Appl. Crystallogr. 26, 574–582 (1993).
  31. O. Elsenhaus, P. Böni, H. P. Friedli, H. Grimmer, P. Buffat, K. Leifer, J. Söchtig, and I. S. Anderson, “Development of Ni/Ti multilayer supermirrors for neutron optics,” Thin Solid Films 246, 110–119 (1994).
  32. T. D. Shen, M. X. Quan, J. T. Wang, and Z. Q. Hu, “Amorphous phase growth by isothermal annealing-induced interdiffusion reactions in mechanically deformed Ni/Ti multilayered composites,” J. Mater. Sci. 29, 2981–2986 (1994).
  33. Ch. Morawe and H. Zabel, “Metal/Al2O3: a new class of x-ray mirrors,” J. Appl. Phys. 80, 3639–3645 (1996).
  34. Landoldt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III, Vol. 7 (Springer, Berlin, 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited