OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 10 — Apr. 1, 1998
  • pp: 1958–1972

Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry

Thomas J. Farrell, Michael S. Patterson, and Matthias Essenpreis  »View Author Affiliations


Applied Optics, Vol. 37, Issue 10, pp. 1958-1972 (1998)
http://dx.doi.org/10.1364/AO.37.001958


View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Most instruments used to measure tissue optical properties noninvasively employ data-analysis algorithms that rely on the simplifying assumption that the tissue is semi-infinite and homogeneous. The influence of a layered tissue architecture on the determination of the scattering and absorption coefficients has been investigated in this study. Reflectance as a function of distance from a point source for a two-layered tissue architecture that simulates skin overlying fat was calculated by using a Monte Carlo code. These data were analyzed by using a diffusion theory model for a homogeneous semi-infinite medium to calculate the scatter and absorption coefficients. Depending on the algorithm and the radial distance, the estimated tissue optical properties were different from those of either layer, and under some circumstances, physically impossible. In addition, the sensitivity and cross talk of the estimated optical properties to changes in input optical properties were calculated for different layered geometries. For typical optical properties of skin, the sensitivity to changes in optical properties is highly dependent on the layered architecture, the measurement distance, and the fitting algorithm. Furthermore, a change in the input absorption coefficient may result in an apparent change in the measured scatter coefficient, and a change in the input scatter coefficient may result in an apparent change in the measured absorption coefficient.

© 1998 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(170.6930) Medical optics and biotechnology : Tissue
(290.1990) Scattering : Diffusion

History
Original Manuscript: July 8, 1997
Revised Manuscript: October 3, 1997
Published: April 1, 1998

Citation
Thomas J. Farrell, Michael S. Patterson, and Matthias Essenpreis, "Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry," Appl. Opt. 37, 1958-1972 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-10-1958

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited