OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 10 — Apr. 1, 1998
  • pp: 1973–1981

Time-Dependent Contrast Functions for Quantitative Imaging in Time-Resolved Transillumination Experiments

Amir H. Gandjbakhche, Victor Chernomordik, Jeremy C. Hebden, and Ralph Nossal  »View Author Affiliations


Applied Optics, Vol. 37, Issue 10, pp. 1973-1981 (1998)
http://dx.doi.org/10.1364/AO.37.001973


View Full Text Article

Acrobat PDF (221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a methodology that can be used in reconstruction algorithms to quantify the optical coefficients and the geometrical cross section of a weakly abnormal optical target embedded in an otherwise homogeneous medium. This novel procedure uses differenttime-dependent point-spread functions to analyze the diffusive and absorptive contrasts obtained from time-of-flight measurements. Data obtained from time-resolved transillumination of a tissuelike phantom are used to test the accuracy of this new deconvolution methodology.

© 1998 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution

Citation
Amir H. Gandjbakhche, Victor Chernomordik, Jeremy C. Hebden, and Ralph Nossal, "Time-Dependent Contrast Functions for Quantitative Imaging in Time-Resolved Transillumination Experiments," Appl. Opt. 37, 1973-1981 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-10-1973


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Chance and R. R. Alfano, eds., Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, Proc. SPIE 2389 (1995).
  2. R. R. Alfano, ed., Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, Proc. SPIE 2387 (1995).
  3. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Biol. Med. 42, 825–840 (1997).
  4. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine. II. Modelling and reconstruction,” Phys. Biol. Med. 42, 841–853 (1997).
  5. T. L. Troy, D. L. Page, and E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical tomography,” J. Biomed. Opt. 1, 342–355 (1996).
  6. S. A. Walker, S. Fantini, and E. Gratton, “Image reconstruction by backprojection from frequency domain optical measurements in highly scattering media,” Appl. Opt. 36, 170–179 (1997).
  7. H. B. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, “Optical image reconstruction using frequency domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
  8. M. A. O’Leary, D. A. Boas, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995).
  9. J. C. Hebden, R. A. Kruger, and K. S. Wong, “Time-resolved imaging through a highly scattering medium,” Appl. Opt. 30, 788–794 (1991).
  10. J. A. Moon and J. Reintjes, “Image resolution by use of multiply scattered light,” Opt. Lett. 19, 521–523 (1994).
  11. A. H. Gandjbakhche, R. Nossal, and R. F. Bonner, “Resolution limits for optical transillumination of abnormalities embedded in tissues,” Med. Phys. 22, 185–191 (1994).
  12. J. C. Hebden, D. J. Hall, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Med. Phys. 22, 201–208 (1995).
  13. S. R. Arridge, “Photon measurement density functions: analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
  14. J. C. Hebden and S. R. Arridge, “Imaging through scattering media using an analytical model of perturbation amplitudes in the time-domain,” Appl. Opt. 35, 6788–6796 (1996).
  15. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, and G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1774 (1996).
  16. V. Chernomordik, R. Nossal, and A. H. Gandjbakhche, “Point spread functions of photons in time-resolved transillumination experiments using simple scaling argument,” Med. Phys. 23, 1857–1861 (1996).
  17. A. H. Gandjbakhche and G. H. Weiss, “Random walk and diffusion-like model of photon migration in turbid media,” in Progress in Optics, E. Wolf, ed. (Pergamon, London, 1995), Vol. 34, pp. 333–402.
  18. A. H. Gandjbakhche, R. F. Bonner, and R. Nossal, “Scaling relationships for anisotropic random walks,” J. Stat. Phys. 69, 35–53 (1992).
  19. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, and G. H. Weiss, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited