OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 10 — Apr. 1, 1998
  • pp: 1982–1989

Assessment of the Size, Position, and Optical Properties of Breast Tumors in Vivo by Noninvasive Optical Methods

Sergio Fantini, Scott A. Walker, Maria Angela Franceschini, Michael Kaschke, Peter M. Schlag, and K. Thomas Moesta  »View Author Affiliations


Applied Optics, Vol. 37, Issue 10, pp. 1982-1989 (1998)
http://dx.doi.org/10.1364/AO.37.001982


View Full Text Article

Acrobat PDF (282 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for the noninvasive determination of the size, position, and optical properties (absorption and reduced scattering coefficients) of tumors in the human breast. The tumor is first detected by frequency-domain optical mammography. It is then sized, located, and optically characterized by use of diffusion theory as amodel for the propagation of near-infrared light in breast tissue. Our method assumes that the tumor is a spherical inhomogeneity embedded in an otherwise homogeneous tissue. We report the results obtained on a 55-year-old patient with a papillary cancer in the right breast. We found that the tumor absorbs and scatters near-infrared light more strongly than the surrounding healthytissue. Our method has yielded a tumor diameter of 2.1 ∓ 0.2cm, which is comparable with the actual size of 1.6 cm, determined after surgery. From the tumor absorption coefficients at two wavelengths (690 and 825 nm), we calculated the total hemoglobin concentration (40 ∓ 10 μM) and saturation (71 ∓ 9%) of the tumor. These results can provide the clinical examiner with more detailed information about breast lesions detected by frequency-domain optical mammography, thereby enhancing its potential for specificity.

© 1998 Optical Society of America

OCIS Codes
(170.3830) Medical optics and biotechnology : Mammography
(290.0290) Scattering : Scattering
(300.0300) Spectroscopy : Spectroscopy
(300.1030) Spectroscopy : Absorption

Citation
Sergio Fantini, Scott A. Walker, Maria Angela Franceschini, Michael Kaschke, Peter M. Schlag, and K. Thomas Moesta, "Assessment of the Size, Position, and Optical Properties of Breast Tumors in Vivo by Noninvasive Optical Methods," Appl. Opt. 37, 1982-1989 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-10-1982


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–727 (1929).
  2. C. M. Gros, Y. Quenneville, and Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
  3. E. Carlsen, “Transillumination light scanning,” Diagn. Imaging 4, 28–34 (1982).
  4. A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, and D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
  5. Y. Yamashita and M. Kaneko, “Visible and infrared diaphanoscopy for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, and P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (SPIE Press, Bellingham, Wash., 1993), pp. 283–316.
  6. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
  7. H. Jess, H. Erdl, K. T. Moesta, S. Fantini, M. A. Franceschini, E. Gratton, and M. Kaschke, “Intensity-modulated breast imaging: technology and clinical pilot study results,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano and J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 1996), pp. 126–129.
  8. K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, and P. M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography,” J. Biomed. Opt. 3(2), (1998).
  9. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
  10. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
  11. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989).
  12. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
  13. The Photon Migration Imaging code is available on the World Wide Web at http://dpdw.eotc.tufts.edu/boas/PMI/pmi.html. The developers of the code are D. Boas, X. Li, M. O’Leary, B. Chance, A. Yodh, M. Ostermeyer, S. Jacques, G. Nishimura, and S. Walker.
  14. B. A. Feddersen, D. W. Piston, and E. Gratton, “Digital parallel acquisition in frequency domain fluorometry,” Rev. Sci. Instrum. 60, 2929–2936 (1989).
  15. H. Heusmann, J. Kölzer, and G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
  16. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2302 (1989).
  17. J. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, and B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
  18. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxigenation,” Anal. Biochem. 195, 330–351 (1991).
  19. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
  20. W. W. Mantulin, S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, and E. Gratton, “Tissue optical parameter map generated with frequency-domain spectroscopy,” in Biomedical Optoelectronic Instrumentation, J. A. Harrington, D. M. Harris, and A. Katzir, eds., Proc. SPIE 2396, 323–330 (1995).
  21. S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, and B. Chance, “Phased array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE 2979, 98–106 (1997).
  22. A. Yodh, “The American experience in optical mammography,” presented at the conference on Breast Cancer Detection by Near Infrared Spectroscopy and Imaging, Berlin, Germany, 6–7 June 1997.
  23. J. H. Hoogenraad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, and E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 184–190 (1998).
  24. X. Wu, L. Stinger, and G. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance and R. R. Alfano, eds., Proc. SPIE 2979, 300–306 (1997).
  25. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
  26. G. Ledanois and J. Virmont, “Optical medical diagnostic and imaging,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, and M. Ferrari, eds., Proc. SPIE 3194, 405–408 (1998).
  27. T. J. Farrel, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
  28. K. A. Kang, B. Chance, S. Zhao, S. Srinivasan, E. Patterson, and R. Troupin, “Breast tumor characterization using near-infra-red spectroscopy,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance and R. R. Alfano, eds., Proc. SPIE 1888, 487–499 (1993).
  29. V. Quaresima, S. J. Matcher, and M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
  30. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited