OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 11 — Apr. 10, 1998
  • pp: 2021–2033

Fluorescent Infrared Scanning-Laser Ophthalmoscope for Three-Dimensional Visualization: Automatic Random-Eye-Motion Correction and Deconvolution

Nathan J. O’Connor, Dirk-Uwe Bartsch, William J. Freeman, Arthur J. Mueller, and Timothy J. Holmes  »View Author Affiliations


Applied Optics, Vol. 37, Issue 11, pp. 2021-2033 (1998)
http://dx.doi.org/10.1364/AO.37.002021


View Full Text Article

Acrobat PDF (5146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Scanning-laser ophthalmoscope (SLO) technology has provided, among other possibilities, the potential for three-dimensional (3-D) visualization of anatomy in the posterior pole of the eye. The use of indocyanine green (ICG) as an infrared fluorescent marker of vasculature in combination with aninfrared SLO (the Heidelberg Retina Angiograph) is presented. Presently, two main factors among others discussed impede the visualization of 3-D structures in observed SLO data. Random eye motion between optical sections and (to a lesser degree) motion between raster scan lines prevent assessment of spatial orientation and connectivity of vasculature. Second, smear along the optic axis owing to the optics prevents accurate determination of vessel or lesion size and shape, especially for features spanning several optical sections. A novel, to our knowledge, deconvolution algorithm is described that automatically corrects for the poor axial (optical-sectioning) resolution of the SLO and for patient random eye motion during target fixation. Encouraging preliminary results are presented showing the usefulness of applying blind deconvolution toward improving the 3-D clarity of SLO data. Although clinical and medical research applications are broad, the specific medical sample selected shows the potential of examining microvascular 3-D morphology for diagnosis and treatment of choroidal tumors.

© 1998 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(170.4470) Medical optics and biotechnology : Ophthalmology

Citation
Nathan J. O’Connor, Dirk-Uwe Bartsch, William J. Freeman, Arthur J. Mueller, and Timothy J. Holmes, "Fluorescent Infrared Scanning-Laser Ophthalmoscope for Three-Dimensional Visualization: Automatic Random-Eye-Motion Correction and Deconvolution," Appl. Opt. 37, 2021-2033 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-11-2021


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. W. Flower and B. F. Hochheimer, “A clinical technique and apparatus for simultaneous angiography of the separate retinal and choroidal circulations,” Invest. Ophthalmol. 12, 248–261 (1973).
  2. B. F. Hochheimer, “Angiography of the retina with indocyanine green,” Arch. Ophthalmol. 86, 564–565 (1971).
  3. D. R. Guyer, L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, A. Ho, and D. Orlock, “Digital indocyanine green videoangiography of central serous chorioretinopathy,” Arch. Ophthalmol. 112, 1057–1062 (1994).
  4. A. Scheider and C. Schroedel, “High resolution indocyanine green angiography with a scanning laser ophthalmoscope,” Am. J. Ophthalmol. 108, 458–459 (1989).
  5. U. Introini, A. Mosca, R. Brancato, A. Pece, and R. Paleari, “Spectrofluorimetric analysis of indocyanine green fluorescence in patients with age-related macular degeneration,” (abstract) Invest. Ophthalmol. Vis. Sci. (Suppl.) 35, 1500 (1994).
  6. A. C. Ho, L. A. Yannuzzi, D. R. Guyer, J. S. Slakter, J. A. Sorenson, and D. A. Orlock, “Intraretinal leakage of indocyanine green dye,” Ophthalmology 101, 534–541 (1994).
  7. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, “Flying spot TV ophthalmoscope,” Appl. Opt. 19, 2991–2997 (1980).
  8. D. U. Bartsch, M. Intaglietta, J. F. Bille, A. W. Dreher, M. Gharib, and W. R. Freeman, “Confocal laser tomographic analysis of the retina in eyes with macular hole formation and other focal macular diseases,” Am. J. Ophthalmol. 108, 277–287 (1989).
  9. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26, 1492–1499 (1987).
  10. S. Wolf, O. Arend, and H. Toonen, “Retinal capillary blood flow measurement with scanning laser ophthalmoscope. Preliminary results,” Ophthalmology 98, 996–1000 (1991).
  11. D. U. Bartsch, R. N. Weinreb, G. Zinser, and W. R. Freeman, “Confocal scanning infrared laser ophthalmoscopy for indocyanine green angiography: preliminary results,” Am. J. Ophthalmol. 120, 642–651 (1995).
  12. D. R. Sandison, R. M. Williams, K. S. Wells, J. Strickler, and W. W. Webb, “Quantitative fluorescence confocal laser scanning microscopy (CLSM),” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 39–53.
  13. G. R. Ayers and J. C. Dainty, “Iterative blind deconvolution method and its applications,” Opt. Lett. 13, 547–549 (1988).
  14. T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Simultaneous image and point spread function reconstruction for 3D light microscopy,” in Image Reconstruction and Restoration, T. J. Schulz and D. L. Snyder, eds., Proc. SPIE 2302, 359–368 (1994).
  15. I. McLean, W. Foster, and L. Zimmerman, “Choroidal melanoma,” Arch. Ophthalmol. 98, 1298–1303 (1980).
  16. J. Shields, J. Augsburger, G. Brown, and R. Stephens, “The differential diagnosis of posterior uveal melanoma,” Ophthalmology 87, 518–522 (1980).
  17. K. Ossoinig, F. Bigar, and S. Kaefring, “Malignant melanoma of the choroid and ciliary body. A differential diagnosis in clinical echography,” Bibl. Ophthalmol. 83, 141–154 (1975).
  18. Collaborative Ocular Melanoma Study Group, “The Collaborative Ocular Melanoma Study: COMS report no. 3,” Contr. Clin. Trials 14, 362–391 (1993).
  19. L. Zimmerman, I. McLean, and W. Foster, “Does enucleation of the eye containing a malignant melanoma prevent or accelerate the dissemination of tumour cells,” Br. J. Ophthalmol. 62, 420–425 (1978).
  20. R. Folberg, V. Rummelt, R. Parys-Van Ginderdeuren, T. Hwang, R. Woolson, J. Peer, and L. Gruman, “The prognostic value of tumor blood vessel morphology in primary uveal melanoma,” Ophthalmology 100, 1389–1398 (1993).
  21. V. Rummelt, R. Folberg, C. Rummelt, L. Gruman, T. Hwang, R. Woolson, M. Hong Yi, and G. Naumann, “Microcirculation architecture of melanocytic nevi and malignant melanomas of the ciliary body and choroid,” Ophthalmology 101, 718–727 (1994).
  22. A. J. Mueller, D. U. Bartsch, R. Folberg, J. Peer, M. H. Goldbaum, D. G. Bitner, R. N. Weinreb, and W. R. Freeman, “Imaging the microvascularization of choroidal melanomas using confocal indocyanine green scanning laser ophthalmoscopy,” Arch. Ophthalmol. (to be published).
  23. R. A. Robb and C. Barillot, “Interactive display and analysis of 3D medical images,” IEEE Trans. Med. Imaging 8, 217–226 (1989).
  24. L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24 (4), 325–376 (1992).
  25. Q. Chen, M. Defrise, and F. Deconinck, “Symmetric phase-only matched filtering of Fourier–Mellin transforms for image registration and recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 1156–1168 (1994).
  26. A. V. Cideciyan, “Registration of ocular fundus images,” IEEE Eng. Med. Biol. 14, 52–58 (1995).
  27. E. DeCastro, G. Cristini, A. Martelli, C. Morandi, and M. Vascotto, “Compensation of random eye motion in television ophthalmoscopy: preliminary results,” IEEE Trans. Med. Imaging 6, 74–81 (1987).
  28. E. DeCastro and C. Morandi, “Registration of translated and rotated images using finite Fourier transforms,” IEEE Trans. Pattern Anal. Mach. Intell. 9, 700–703 (1987).
  29. T. J. Holmes, S. Bhattacharyya, J. A. Cooper, D. Hanzel, V. Krishnamurthi, W. Lin, B. Roysam, D. H. Szarowski, and J. N. Turner, “Light microscopic images reconstructed by maximum likelihood deconvolution,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 389–402.
  30. T. J. Holmes, “Blind deconvolution of quantum-limited incoherent imagery,” J. Opt. Soc. Am. A 9, 1052–1061 (1992).
  31. D. L. Snyder and M. I. Miller, Random Point Processes in Time and Space (Springer-Verlag, New York, 1991).
  32. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. B 39, 1–37 (1977).
  33. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging MI-1, 113–122 (1982).
  34. T. J. Holmes, “Maximum-likelihood image restoration adapted for noncoherent optical imaging,” J. Opt. Soc. Am. A 5, 666–673 (1988).
  35. M. I. Miller and B. Roysam, “Bayesian image reconstruction for emission tomography incorporating Good’s roughness prior on massively parallel processors,” Proc. Natl. Acad. Sci. 88, 3223–3227 (1991).
  36. S. Joshi and M. I. Miller, “Maximum a posteriori estimation with Good’s roughness for three-dimensional optical sectioning microscopy,” J. Opt. Soc. Am. A 10, 1078–1085 (1993).
  37. V. Krishnamurti, Y. Liu, S. Bhattacharyya, J. N. Turner, and T. J. Holmes, “Blind deconvolution of fluorescence micrographs by maximum-likelihood estimation,” Appl. Opt. 34, 6633–6647 (1995).
  38. G. W. Gerchberg and W. O. Saxton, “Super-resolution through error energy reduction,” Opt. Acta 21, 709–720 (1974).
  39. F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
  40. S. Bhattacharyya, D. H. Szarowski, J. N. Turner, N. O’Connor, and T. J. Holmes, “The ML–blind deconvolution algorithm: recent developments,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, and T. Wilson, eds., Proc. SPIE 2655, 175–186 (1996).
  41. B. R. Straatsma, R. Y. Foos, and L. M. Spencer, “The retina-topography and clinical correlations,” in Symposium on Retina and Retinal Surgery: Transactions of the New Orleans Academy of Ophthalmology, W. D. Cockerham, ed. (Mosby, St. Louis, Mo., 1969).
  42. T. J. Holmes and Y. Liu, “Acceleration of maximum-likelihood image restoration for fluorescence microscopy and other noncoherent imagery,” J. Opt. Soc. Am. A 8, 893–907 (1991).
  43. J. B. Pawley, “Fundamental limits in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 19–37.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited