OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 11 — Apr. 10, 1998
  • pp: 2046–2050

Filtering algorithm for noise reduction in phase-map images with 2π phase jumps

Rui Seara, Armando A. Gonçalves, Jr., and Policarpo B. Uliana  »View Author Affiliations


Applied Optics, Vol. 37, Issue 11, pp. 2046-2050 (1998)
http://dx.doi.org/10.1364/AO.37.002046


View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A filtering algorithm is proposed for processing images generated by TV holography that contain phase jumps and a high noise level. This algorithm first performs phase unwrapping without removing the noise. After that, it removes the noise by use of a conventional low-pass filter. The new approach allows for using low-pass filters with narrow passbands, leading to a better signal-to-noise ratio in the desired signal. Simulation results are presented and discussed. The new algorithm has been applied successfully under real conditions in a holographic station.

© 1998 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(110.4280) Imaging systems : Noise in imaging systems
(350.5030) Other areas of optics : Phase

History
Original Manuscript: June 16, 1997
Revised Manuscript: November 12, 1997
Published: April 10, 1998

Citation
Rui Seara, Armando A. Gonçalves, and Policarpo B. Uliana, "Filtering algorithm for noise reduction in phase-map images with 2π phase jumps," Appl. Opt. 37, 2046-2050 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-11-2046


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Reid, “Automatic fringe pattern analysis: a review,” Opt. Lasers Eng. 7, 37–68 (1986). [CrossRef]
  2. C. A. Sciammarela, G. Bhat, N. Longinow, M. Zhao, “A high accuracy micromechanics displacement measure optical technique,” in Proceedings of the Winter Annual Meeting of the American Society of Mechanical Engineers (American Society of Mechanical Engineers, New York, 1988), pp. 121–132.
  3. K. Itoh, “Analysis of the phase unwrapping algorithm,” Appl. Opt. 21, 2470 (1982). [CrossRef] [PubMed]
  4. D. J. Bone, A. Bachor, R. J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt. 25, 1653–1660 (1986). [CrossRef] [PubMed]
  5. E. Vikhagen, “Nondestructive testing by use of TV holography and deformation phase gradient calculation,” Appl. Opt. 29, 137–144 (1990). [CrossRef] [PubMed]
  6. A. A. Gonçalves, “Determination of displacements, strain and rotations from holographic interferometry data using 2-D fringe order function,” in Second International Conference on Photomechanics and Speckle Metrology: Moiré Techniques, Holographic Interferometry, Optical NDT, and Applications to Fluid Mechanics, F. Chiang, ed., Proc. SPIE1554B, 64–70 (1991).
  7. D. C. Ghiglia, G. A. Mastin, L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am. A 4, 267–280 (1987). [CrossRef]
  8. J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3268–3270 (1989). [CrossRef] [PubMed]
  9. J. M. Huntley, H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993). [CrossRef] [PubMed]
  10. D. J. Bone, “Fourier fringe analysis: the two-dimensional phase unwrapping problem,” Appl. Opt. 30, 3627–3632 (1991). [CrossRef] [PubMed]
  11. R. Cusak, J. Huntley, H. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781–789 (1995). [CrossRef]
  12. D. C. Ghiglia, L. A. Romero, “Minimum Lp-norm two-dimensional phase unwrapping,” J. Opt. Soc. Am. A 13, 1999–2013 (1996). [CrossRef]
  13. M. A. Herráez, D. R. Burton, M. J. Lalor, D. B. Clegg, “Robust, simple, and fast algorithm for phase unwrapping,” Appl. Opt. 35, 5847–5852 (1996). [CrossRef]
  14. K. A. Stetson, J. Wahid, P. Gauthier, “Noise-immune phase unwrapping by use of calculated wrap regions,” Appl. Opt. 36, 4830–4838 (1997). [CrossRef] [PubMed]
  15. M. Lehmann, “Decorrelation-induced phase errors in phase-shifting speckle interferometry,” Appl. Opt. 36, 3667–3632 (1997). [CrossRef]
  16. A. A. Gonçalves, R. Seara, P. B. Uliana, “A new amplitude weighted filtering technique for noise reduction in images with 2π phase jumps,” in Interferometry: Techniques and Analysis II, O. Y. Kwon, G. M. Brown, M. Kujawinska, eds., Proc. SPIE2003, 312–322 (1993).
  17. T. W. Bushman, M. A. Gennert, R. J. Pryputniewicz, “Phase unwrapping by least squares error minimization of phase curvature,” in Interferometry: Techniques and Analysis II, O. Y. Kwon, G. M. Brown, M. Kujawinska, eds., Proc. SPIE2003, 334–348 (1993).
  18. M. D. Pritt, J. S. Shipman, “Least-squares two dimensional phase unwrapping using FFT’s,” IEEE Trans. Geosci. Remote. Sens. 32, 706–708 (1994). [CrossRef]
  19. B. Friedlander, J. M. Francos, “Model based phase unwrapping of 2-D signals,” IEEE Trans. Signal Process. 44, 2999–3007 (1996). [CrossRef]
  20. A. A. Gonçalves, “Holographic station: a practical system for applying TV holography,” in Interferometry VI: Applications, Proc. SPIE2004, 215–223 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited