OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 11 — Apr. 10, 1998
  • pp: 2051–2062

Synthetic discriminant function filter employing nonlinear space-domain preprocessing on bandpass-filtered images

Lamia S. Jamal-Aldin, Rupert C. D. Young, and Chris R. Chatwin  »View Author Affiliations

Applied Optics, Vol. 37, Issue 11, pp. 2051-2062 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (631 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Previously [ Appl. Opt. 36, p. 9212 (1997)] we examined the performance of the linear and nonlinear preprocessed difference-of-Gaussians filter, and it was shown that this operation results in greater tolerance to in-class variations while maintaining excellent discrimination ability. The introduction of nonlinearity was shown to provide greater robustness to the filter’s response to noise and background clutter in the input scene. We incorporate this new operation into the synthesis of a modified synthetic discriminant function filter. The filter is shown to produce sharp peaks, excellent discrimination without the need to include out-of-class objects, and good invariance to out-of-plane rotation over a distortion range of up to 90°. Additionally, the introduction of nonlinearity is shown to provide greater robustness of the filter response to background clutter in the input scene.

© 1998 Optical Society of America

OCIS Codes
(100.5010) Image processing : Pattern recognition
(100.6740) Image processing : Synthetic discrimination functions
(100.7410) Image processing : Wavelets

Original Manuscript: June 30, 1997
Revised Manuscript: November 20, 1997
Published: April 10, 1998

Lamia S. Jamal-Aldin, Rupert C. D. Young, and Chris R. Chatwin, "Synthetic discriminant function filter employing nonlinear space-domain preprocessing on bandpass-filtered images," Appl. Opt. 37, 2051-2062 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  2. C. F. Hester, D. Casasent, “Multivariant technique for multiclass pattern recognition,” Appl. Opt. 19, 1758–1761 (1980). [CrossRef] [PubMed]
  3. B. V. K. Vijaya Kumar, “Minimum variance synthetic discriminant functions,” J. Opt. Soc. Am. A 3, 1579–1584 (1986). [CrossRef]
  4. A. Mahalanobis, B. V. K. Kumar, D. Casasent, “Minimum average correlation energy filters,” Appl. Opt. 26, 3633–3640 (1987). [CrossRef] [PubMed]
  5. D. Casasent, G. Ravichandran, “Advanced distortion-invariant minimum average correlation energy (MACE) filters,” Appl. Opt. 31, 1109–1116 (1992). [CrossRef] [PubMed]
  6. G. Ravichandran, D. Casasent, “Minimum noise and correlation energy optical correlation filters,” Appl. Opt. 31, 1823–1833 (1992). [CrossRef] [PubMed]
  7. D. L. Flannery, “Optimal trade-off distortion-tolerant constrained modulation correlation filters,” J. Opt. Soc. Am. A 12, 66–72 (1995). [CrossRef]
  8. Ph. Réfrégier, “Filter design for optical pattern recognition: multicriteria optimization approach,” Opt. Lett. 15, 854–856 (1990). [CrossRef]
  9. B. V. K. Vijaya Kumar, A. Mahalanobis, S. Song, S. Sims, J. Epperson, “Minimum square error synthetic discriminant functions,” Opt. Eng. 31, 915–922 (1992). [CrossRef]
  10. A. Mahalanobis, B. V. K. Vijaya Kumar, S. Song, S. R. F. Sims, J. F. Epperson, “Unconstrained correlation filters,” Appl. Opt. 33, 3751–3759 (1994). [CrossRef] [PubMed]
  11. B. V. K. Kumar, J. D. Brasher, C. F. Hester, “Nonlinear decision boundaries from the use of complex constraints in synthetic discriminant function filters,” in Photonics for Processors, Neural Networks, and Memories, J. L. Horner, B. Javidi, S. T. Kowel, W. J. Miceli, eds., Proc. SPIE2026, 88–99 (1993). [CrossRef]
  12. D. Jared, D. Ennis, “Inclusion of filter modulation in the synthetic discriminant function construction,” Appl. Opt. 28, 232–239 (1989). [CrossRef] [PubMed]
  13. D. Jared, “Distortion range of filter synthetic discriminant function binary phase-only filters,” Appl. Opt. 28, 4335–4339 (1989). [CrossRef]
  14. R. K. Wang, C. R. Chatwin, M. Y. Huang, “Modified filter synthetic discriminant function for improved optical correlator performance,” Appl. Opt. 33, 7646–7654 (1994). [CrossRef] [PubMed]
  15. B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992). [CrossRef]
  16. B. V. K. Kumar, A. Mahalanobis, “Recent advances in distortion-invariant correlation filter design,” in Optical Pattern Recognition VI, D. Casasent, T.-H. Chao, eds., Proc. SPIE2490, 2–13 (1995). [CrossRef]
  17. D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lon. B 207, 187–217 (1980). [CrossRef]
  18. L. S. Jamal-Aldin, R. C. D. Young, C. R. Chatwin, “Application of nonlinearity to wavelet-transformed images to improve correlation filter performance,” Appl. Opt. 36, 9212–9224 (1997). [CrossRef]
  19. B. Javidi, D. Painchaud, “Distortion-invariant pattern recognition with Fourier-plane nonlinear filters,” Appl. Opt. 35, 318–331 (1996). [CrossRef] [PubMed]
  20. A. Mahalanobis, B. V. K. Kumar, “Optimality of the maximum average correlation height filter for detection of targets in noise,” Opt. Eng. 36, 2642–2648 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited