OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 11 — Apr. 10, 1998
  • pp: 2067–2073

Optical properties of an UV-cured liquid-crystal microlens array

Shin Masuda, Toshiaki Nose, and Susumu Sato  »View Author Affiliations

Applied Optics, Vol. 37, Issue 11, pp. 2067-2073 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate, for the first time to our knowledge, a microlens array of the gradient-index type using a novel liquid-crystalline material that possesses the property of photopolymerization by UV irradiation. Optical and electrical properties of the UV-curable liquid crystal are investigated to optimize UV curing conditions. The microlens array is prepared by use of an UV-curable liquid crystal, and gradient-index profiles are monitored during photopolymerization. As a result, relatively good focusing and imaging properties can be obtained even after photopolymerization. This technique affords us a very controllable way to fabricate the micro-optic components.

© 1998 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.4760) Materials : Optical properties
(200.4650) Optics in computing : Optical interconnects

Original Manuscript: August 11, 1997
Revised Manuscript: November 7, 1997
Published: April 10, 1998

Shin Masuda, Toshiaki Nose, and Susumu Sato, "Optical properties of an UV-cured liquid-crystal microlens array," Appl. Opt. 37, 2067-2073 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Iga, M. Oikawa, S. Misawa, J. Banno, Y. Kokubun, “Stacked planer optics: application of the planar microlens,” Appl. Opt. 21, 3456–3460 (1982). [CrossRef] [PubMed]
  2. Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55 (2), 97–99 (1989). [CrossRef]
  3. M. C. Hutley, “Optical techniques for generation of microlens array,” J. Mod. Opt. 37, 253–265 (1990). [CrossRef]
  4. T. Nose, S. Sato, “Liquid crystal microlens with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989). [CrossRef]
  5. T. Nose, S. Masuda, S. Sato, “Liquid crystal microlens with hole-patterned electrode on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1646 (1992). [CrossRef]
  6. S. Masuda, S. Takahashi, T. Nose, S. Sato, “Liquid-crystal microlenses with a beam-steering function,” Appl. Opt. 36, 4772–4778 (1997). [CrossRef] [PubMed]
  7. D. R. Haas, H.-T. Man, “Polymeric electro-optic modulators,” in Optical Computing, Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 133.
  8. P. R. Ashley, T. A. Tumollilo, “A novel pulse-poling technique for EO polymer waveguide devices using device electrode poling,” IEEE Photon. Technol. Lett. 4, 142–145 (1992). [CrossRef]
  9. H. Hida, H. Onose, S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5, 782–784 (1993). [CrossRef]
  10. D. J. Broer, “Molecular architecture in thin plastic films by in-situ photopolymerization of reactive liquid crystals,” J. Soc. Inf. Display 3, 185–189 (1995). [CrossRef]
  11. H. Hasebe, K. Takeuchi, H. Takatsu, “Properties of novel UV curable liquid crystals and their retardation films,” in Proceeding of Fourteenth International Display Research Conference, Monterey, Calif., 10–13 October 1994 (SID, Santa Monica, Calif.), p. 161.
  12. S. Masuda, T. Nose, S. Sato, “Visualization of director distributions by using a UV curable liquid crystal,” Jpn. J. Appl. Phys. 34, L1055–L1057 (1995). [CrossRef]
  13. S. Masuda, T. Nose, S. Sato, “Cross-sectional observations of the cholestric textures in a Cano wedge cell,” Liq. Cryst. 20 (5), 569–572 (1996).
  14. S. Masuda, T. Nose, S. Sato, “Dependence of optical properties on device and material parameters in liquid crystal microlenses,” Jpn. J. Appl. Phys. 35, 4668–4672 (1996). [CrossRef]
  15. P. G. de Genne, J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, Oxford, U.K., 1993), p. 139.
  16. H. Takatsu, S. Hasebe, “UV curable liquid crystals and their application,” in Liquid Crystals for Advanced Technologies, T. J. Bunning, S. H. Chen, W. Hawthorne, T. Kajiyama, N. Koide, eds., Vol. 425 of Material Research Society Symposium Proceedings (Material Research Society, Pittsburgh, Pa., 1996), pp. 293–303.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited