OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 11 — Apr. 10, 1998
  • pp: 2112–2118

Nonlinear morphological correlation: optoelectronic implementation

Pasquala Garcia-Martínez, David Mas, Javier García, and Carlos Ferreira  »View Author Affiliations

Applied Optics, Vol. 37, Issue 11, pp. 2112-2118 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (531 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optoelectronic implementation of the nonlinear morphological correlation by use of a threshold-decomposition technique and a joint transform correlator architecture is presented. This nonlinear morphological correlation provides improved image detection compared with standard linear optical pattern-recognition correlation methods. It also offers a more robust detection of low-intensity images in the presence of high-intensity patterns to be rejected.

© 1998 Optical Society of America

OCIS Codes
(070.5010) Fourier optics and signal processing : Pattern recognition
(250.0250) Optoelectronics : Optoelectronics

Original Manuscript: May 23, 1997
Revised Manuscript: December 8, 1997
Published: April 10, 1998

Pasquala Garcia-Martínez, David Mas, Javier García, and Carlos Ferreira, "Nonlinear morphological correlation: optoelectronic implementation," Appl. Opt. 37, 2112-2118 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973), Chap. 7, p. 279.
  2. G. L. Turin, “An introduction to matched filters,” IRE Trans. Inf. Theory IT-6, 311–329 (1960). [CrossRef]
  3. E. R. Dougherty, J. Astola, An Introduction to Nonlinear Image Processing, Vol. TT16 of SPIE Tutorial Text Series (SPIE Press, Bellingham, Wash., 1994).
  4. P. Maragos, “Morphological correlation and mean absolute error,” in ICASSP-89: 1989 International Conference on Acoustic, Speech and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1989), Vol. 3, pp. 1568–1571.
  5. P. Maragos, “Optimal morphological approaches to image matching and object detection,” paper presented at the Second International Conference on Computer Vision, Tampa, Florida, 5–8 December, 1988.
  6. J. Serra, Image Analysis and Mathematical Morphology (Academic, London, 1982).
  7. P. Maragos, R. W. Schafer, “Morphological systems for multidimensional signal processing,” Proc. IEEE 78, 690–710 (1990). [CrossRef]
  8. P. Maragos, R. W. Schafer, “Morphological filters. Part I: their set-theoretic analysis and relations to linear shift-invariant filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153–1169 (1987). [CrossRef]
  9. P. Maragos, R. W. Schafer, “Morphological filters. Part II: Their relations to median, order-statistic, and stack filters,” IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1170–1184 (1987). [CrossRef]
  10. J. P. Fitch, E. J. Coyle, N. C. Gallagher, “Median filtering by threshold decomposition,” IEEE Trans. Acoust. Speech Signal Process. ASSP-32, 1183–1188 (1984). [CrossRef]
  11. P. D. Wendt, E. J. Coyle, N. C. Gallagher, “Stack filters,” IEEE Trans. Acoust. Speech and Signal Process. ASSP-34, 898–911 (1986). [CrossRef]
  12. E. Ochoa, J. P. Allebach, D. W. Sweeney, “Optical median filtering using threshold decomposition,” Appl. Opt. 26, 252–260 (1987). [CrossRef] [PubMed]
  13. J. M. Hereford, W. T. Rhodes, “Nonlinear optical image filtering by time-sequential threshold decomposition,” Opt. Eng. 27, 274–279 (1988). [CrossRef]
  14. R. Schaefer, D. Casasent, “Optical implementation of gray scale morphology,” in Nonlinear Image Processing III, E. R. Dougherty, J. Astola, C. G. Boncelet, eds., Proc. SPIE1658, 287–296 (1992). [CrossRef]
  15. J. García, T. Szoplik, C. Ferreira, “Optoelectronic morphological image processor,” Opt. Lett. 18, 1952–1954 (1993). [CrossRef] [PubMed]
  16. M. Gedziorowski, J. García, “Programmable optical digital processor for rank-order and morphological image processor,” Opt. Commun. 119, 207–217 (1995). [CrossRef]
  17. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  18. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef] [PubMed]
  19. X. J. Lu, F. T. S. Yu, D. A. Gregory, “Comparison of VanderLugt and joint transform correlators,” Appl. Phys. B 51, 153–164 (1990). [CrossRef]
  20. C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994). [CrossRef]
  21. G. Moddel, “FLC spatial light modulators,” in Spatial Light Modulator Technology: Material, Devices and Applications, U. Efron, ed. (Marcel Dekker, New York, 1995), Chap. 6, pp. 347–349.
  22. B. Noharet, H. Sjöberg, R. Hey, “Fast portable optical information processing,” paper presented at the Euro-American Workshop: Optoelectronic Information Processing, Sitges, Barcelona, Spain, 2–5 June, 1997.
  23. J. P. Karins, S. A. Mills, J. R. Ryan, R. Barry Dydyk, “Performance of a second-generation miniature ruggedized optical correlator module,” Opt. Eng. 36, 2747–2753 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited