OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 11 — Apr. 10, 1998
  • pp: 2119–2129

Laser-speckle angular-displacement sensor: theoretical and experimental study

Bjarke Rose, Husain Imam, Steen G. Hanson, Harold T. Yura, and René S. Hansen  »View Author Affiliations


Applied Optics, Vol. 37, Issue 11, pp. 2119-2129 (1998)
http://dx.doi.org/10.1364/AO.37.002119


View Full Text Article

Enhanced HTML    Acrobat PDF (274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel, to our knowledge, method for the measurement of angular displacement for arbitrarily shaped objects is presented in which the angular displacement is perpendicular to the optical axis. The method is based on Fourier-transforming the scattered field from a single laser beam that illuminates the target. The angular distribution of the light field at the target is linearly mapped on a linear image sensor placed in the Fourier plane. Measuring this displacement facilitates the determination of the angular displacement of the target. It is demonstrated both theoretically and experimentally that the angular-displacement sensor is insensitive to object shape and target distance if the linear image sensor is placed in the Fourier plane. A straightforward procedure for positioning the image sensor in the Fourier plane is presented. Any transverse or longitudinal movement of the target will give rise to partial speckle decorrelation, but it will not affect the angular measurement. Furthermore, any change in the illuminating wavelength will not affect the angular measurements. Theoretically and experimentally it is shown that the method has a resolution of 0.3 mdeg (≈5 μrad) for small angular displacements, and methods for further improvement in resolution is discussed. No special surface treatment is required for surfaces giving rise to fully developed speckle. The effect of partially developed speckle is considered both theoretically and experimentally.

© 1998 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

History
Original Manuscript: May 29, 1997
Revised Manuscript: September 16, 1997
Published: April 10, 1998

Citation
Bjarke Rose, Husain Imam, Steen G. Hanson, Harold T. Yura, and René S. Hansen, "Laser-speckle angular-displacement sensor: theoretical and experimental study," Appl. Opt. 37, 2119-2129 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-11-2119

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited