## Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters

Applied Optics, Vol. 37, Issue 11, pp. 2130-2141 (1998)

http://dx.doi.org/10.1364/AO.37.002130

Enhanced HTML Acrobat PDF (247 KB)

### Abstract

We provide a general treatment of optical two-dimensional fractional Fourier transforming systems. We not only allow the fractional Fourier transform orders to be specified independently for the two dimensions but also allow the input and output scale parameters and the residual spherical phase factors to be controlled. We further discuss systems that do not allow all these parameters to be controlled at the same time but are simpler and employ a fewer number of lenses. The variety of systems discussed and the design equations provided should be useful in practical applications for which an optical fractional Fourier transforming stage is to be employed.

© 1998 Optical Society of America

**OCIS Codes**

(070.2590) Fourier optics and signal processing : ABCD transforms

**History**

Original Manuscript: June 17, 1997

Revised Manuscript: December 4, 1997

Published: April 10, 1998

**Citation**

Aysegul Sahin, Haldun M. Ozaktas, and David Mendlovic, "Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters," Appl. Opt. **37**, 2130-2141 (1998)

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-11-2130

Sort: Year | Journal | Reset

### References

- H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993). [CrossRef]
- D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993). [CrossRef]
- H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transforms and their optical implementation II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993). [CrossRef]
- A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional order Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
- D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform,” Appl. Opt. 33, 6188–6193 (1994). [CrossRef] [PubMed]
- H. M. Ozaktas, D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995). [CrossRef]
- P. Pellat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,” Opt. Lett. 19, 1388–1390 (1994). [CrossRef] [PubMed]
- P. Pellat-Finet, G. Bonnet, “Fractional order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994). [CrossRef]
- D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Fractional correlation,” Appl. Opt. 34, 303–309 (1995). [CrossRef] [PubMed]
- L. M. Bernardo, O. D. D. Soares, “Fractional Fourier transforms and imaging,” J. Opt. Soc. Am. A 11, 2622–2626 (1994). [CrossRef]
- L. M. Bernardo, O. D. D. Soares, “Fractional Fourier transforms and optical systems,” Opt. Commun. 110, 517–522 (1994). [CrossRef]
- H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators,” Opt. Lett. 19, 1678–1680 (1994). [CrossRef] [PubMed]
- T. Alieva, V. Lopez, F. Agullo-Lopez, L. B. Almedia, “The fractional Fourier transform in optical propagation problems,” J. Mod. Opt. 41, 1037–1044 (1994). [CrossRef]
- M. A. Kutay, H. M. Ozaktas, L. Onural, O. Arikan, “Optimal filtering in fractional Fourier domains,” in Proceedings of the 1995 IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1995), Vol. 12, pp. 937–940. [CrossRef]
- M. A. Kutay, H. M. Ozaktas, O. Arikan, L. Onural, “Optimal filtering in fractional Fourier domains,” IEEE Trans. Signal Process. 45, 1129–1143 (1997). [CrossRef]
- H. M. Ozaktas, O. Arikan, M. A. Kutay, G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996). [CrossRef]
- R. G. Dorsch, A. W. Lohmann, Y. Bitran, D. Mendlovic, H. M. Ozaktas, “Chirp filtering in the fractional Fourier domain,” Appl. Opt. 33, 7599–7602 (1994). [CrossRef] [PubMed]
- D. Mendlovic, Z. Zalevsky, A. W. Lohmann, R. G. Dorsch, “Signal spatial-filtering using the localized fractional Fourier transform,” Opt. Commun. 126, 14–18 (1996). [CrossRef]
- A. W. Lohmann, Z. Zalevsky, D. Mendlovic, “Synthesis of pattern recognition filters for fractional Fourier processing,” Opt. Commun. 128, 199–204 (1996). [CrossRef]
- Z. Zalevsky, D. Mendlovic, “Fractional Wiener filter,” Appl. Opt. 35, 3930–3936 (1996). [CrossRef] [PubMed]
- D. F. McAlister, M. Beck, L. Clarke, A. Mayer, M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995). [CrossRef] [PubMed]
- J. Garcia, D. Mendlovic, Z. Zalevsky, A. Lohmann, “Space-variant simultaneous detection of several objects by the use of multiple anamorphic fractional-Fourier-transform filters,” Appl. Opt. 35, 3945–3952 (1996). [CrossRef] [PubMed]
- B. Barshan, M. A. Kutay, H. M. Ozaktas, “Optimal filtering with linear canonical transformations,” Opt. Commun. 135, 32–36 (1997). [CrossRef]
- H. M. Ozaktas, “Repeated fractional Fourier domain filtering is equivalent to repeated time and frequency domain filtering,” Signal Process. 54, 81–84 (1996). [CrossRef]
- H. M. Ozaktas, D. Mendlovic, “Every Fourier optical system is equivalent to consecutive fractional Fourier domain filtering,” Signal Process. 54, 81–84 (1996). [CrossRef]
- M. F. Erden, H. M. Ozaktas, A. Sahin, D. Mendlovic, “Design of dynamically adjustable fractional Fourier transformer,” Opt. Commun. 136, 52–60 (1997). [CrossRef]
- D. Mendlovic, Y. Bitran, C. Ferreira, J. Garcia, H. M. Ozaktas, “Anamorphic fractional Fourier transforming—optical implementation and applications,” Appl. Opt. 34, 7451–7456 (1995). [CrossRef] [PubMed]
- A. Sahin, H. M. Ozaktas, D. Mendlovic, “Optical implementation of the two-dimensional fractional Fourier transform with different orders in the two dimensions,” Opt. Commun. 120, 134–138 (1995). [CrossRef]
- A. Sahin, “Two-dimensional fractional Fourier transform and its optical implementation,” M.S. thesis (Bilkent University, Ankara, Turkey, 1996).
- Y. B. Karasik, “Expression of the kernel of a fractional Fourier transform in elementary functions,” Opt. Lett. 19, 769–770 (1994). [CrossRef] [PubMed]
- L. B. Almeida, “The fractional Fourier transform and time–frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994). [CrossRef]
- V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Its Appl. 25, 241–265 (1987). [CrossRef]
- A. C. McBride, F. H. Kerr, “On Namias’s fractional Fourier transform,” IMA J. Appl. Math. 39, 159–175.
- H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994). [CrossRef]
- M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. A 69, 1710–1716 (1979). [CrossRef]
- K. B. Wolf, “Construction and properties of canonical transforms,” in Integral Transforms in Science and Engineering (Plenum, New York, 1979), Chap. 9.
- B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
- M. J. Bastiaans, “The Wigner distribution applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978). [CrossRef]
- M. J. Bastiaans, “The Wigner distribution function and Hamilton’s characteristics of a geometric-optical system,” Opt. Commun. 30, 321–326 (1979). [CrossRef]
- M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution in first-order optical systems,” Optik (Stuttgart) 82, 173–181 (1989).
- M. J. Bastiaans, “Second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 88, 163–168 (1991).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.