OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 11 — Apr. 10, 1998
  • pp: 2153–2163

Optoelectronic recoded and nonrecoded trinary signed-digit adder that uses optical correlation

Abdallah K. Cherri, Mahmoud K. Habib, and Mohammad S. Alam  »View Author Affiliations

Applied Optics, Vol. 37, Issue 11, pp. 2153-2163 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A symbolic-substitution-based optical numeric processor that uses recoded and nonrecoded trinary signed-digit (TSD) number representations is proposed. Also, we propose new joint spatial encodings for the TSD numbers that reduce the symbolic-substitution computation rules involved in the processor. Optoelectronic implementation of the proposed recoded adder is feasible. Also, the nonrecoded TSD addition can be performed optically in two steps. Both the proposed recoded and nonrecoded adders are more compact than a recently reported modified signed-digit counterpart and use fewer correlators and spatial light modulators.

© 1998 Optical Society of America

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(200.0200) Optics in computing : Optics in computing

Original Manuscript: July 21, 1997
Revised Manuscript: November 24, 1997
Published: April 10, 1998

Abdallah K. Cherri, Mahmoud K. Habib, and Mohammad S. Alam, "Optoelectronic recoded and nonrecoded trinary signed-digit adder that uses optical correlation," Appl. Opt. 37, 2153-2163 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. L. Johnson, M. A. Karim, Digital Design: A Pragmatic Approach (PWS-Kent, Boston, Mass., 1987).
  2. K. Hwang, Computer Arithmetic Principles: Architecture and Design (Wiley, New York, 1979).
  3. S. L. Hurst, “Multiple-valued threshold logic: its status and its realization,” Opt. Eng. 25, 44–53 (1986). [CrossRef]
  4. M. M. Mirsalehi, T. K. Gaylord, “Logical minimization of multilevel coded functions,” Appl. Opt. 25, 3078–3088 (1986). [CrossRef] [PubMed]
  5. A. P. Gautzouilis, E. C. Malarkey, D. K. Davies, J. C. Bradley, P. R. Beaudet, “Optical processing with residue LED/LD lookup tables,” Appl. Opt. 27, 1674–1681 (1988). [CrossRef]
  6. G. A. De Biase, A. Massini, “High efficiency redundant binary number representations for parallel arithmetic on optical computers,” Opt. Laser Technol. 26, 219–224 (1994). [CrossRef]
  7. N. Takagi, S. Yajima, “Modular multiplication hardware algorithms with redundant representation and their application to RSA cryptosystem,” IEEE Trans. Comput. 41, 887–891 (1992). [CrossRef]
  8. T. Stouraitis, C. Chen, “Hybrid signed-digit logarithmic number system processor,” Proc. Inst. Electr. Eng. Part E 140, 205–210 (1993).
  9. W. Balakrishnan, N. Burgess, “Very-high-speed VLSI 2s-complement multiplier using signed binary digits,” Proc. Inst. Electr. Eng. Part E 139, 29–34 (1992).
  10. F. Li, M. Morisue, “A novel Josephson adder without carry propagation delay,” IEEE Trans. Appl. Supercond. 3, 2683–2686 (1993). [CrossRef]
  11. P. Srinivasan, F. E. Petry, “Constant-division algorithms,” Proc. Inst. Electr. Eng. Part E 141, 334–340 (1994).
  12. N. Burgess, “Radix-2 SRT division algorithm with simple quotient digit selection,” Electron. Lett. 27, 1910–1911 (1991). [CrossRef]
  13. R. P. Bocker, B. L. Drake, M. E. Lasher, T. B. Henderson, “Modified signed-digit addition and subtraction using optical symbolic substitution,” Appl. Opt. 25, 2456–2457 (1986). [CrossRef] [PubMed]
  14. A. K. Cherri, M. A. Karim, “Modified signed digit arithmetic using an efficient symbolic substitution,” Appl. Opt. 27, 3824–3827 (1988). [CrossRef] [PubMed]
  15. H. Huang, M. Itoh, T. Yatagai, “Modified signed-digit arithmetic based on redundant bit representation,” Appl. Opt. 33, 6146–6156 (1994). [CrossRef] [PubMed]
  16. A. A. S. Awwal, M. N. Islam, M. A. Karim, “Modified signed-digit trinary arithmetic by using symbolic substitution,” Appl. Opt. 31, 1687–1694 (1994). [CrossRef]
  17. A. K. Cherri, M. A. Habib, M. S. Alam, “Efficient implementation of arithmetic units based on polarization-encoded optical shadow-casting,” Opt. Eng. 36, 94–101 (1997). [CrossRef]
  18. M. S. Alam, M. A. Karim, A. A. S. Awwal, J. J. Westerkamp, “Optical processing based on conditional higher-order trinary modified signed-digit symbolic substitution,” Appl. Opt. 31, 5614–5622 (1992). [CrossRef] [PubMed]
  19. A. K. Cherri, “Symmetrically recoded modified signed-digit optical addition and subtraction,” Appl. Opt. 33, 4378–4382 (1994). [CrossRef] [PubMed]
  20. K. Hwang, D. K. Panda, “High-radix symbolic substitution and superposition techniques for optical matrix algebraic computations,” Opt. Eng. 31, 2422–2433 (1992). [CrossRef]
  21. A. K. Cherri, N. I. Khachab, “Canonical quaternary signed-digit arithmetic using optoelectronics symbolic substitution,” Opt. Laser Technol. 28, 397–403 (1996). [CrossRef]
  22. B. Ha, Y. Li, “Parallel modified signed-digit arithmetic using an optoelectronic shared content-addressable-memory processor,” Appl. Opt. 33, 3647–3662 (1994). [CrossRef] [PubMed]
  23. M. S. Alam, Y. Ahuja, A. K. Cherri, A. Chatterjea, “Symmetrically recoded quaternary signed-digit arithmetic using a shared content-addressable memory,” Opt. Eng. 35, 1141–1149 (1996). [CrossRef]
  24. D. P. Casasent, E. C. Botha, “Multifunctional optical processor based on symbolic substitution,” Opt. Eng. 28, 425–433 (1989). [CrossRef]
  25. E. Botha, J. Richards, D. P. Casasent, “Optical laboratory morphological inspection processor,” Appl. Opt. 28, 5342–5350 (1989). [CrossRef] [PubMed]
  26. D. P. Casasent, R. Sturgill, “Optical hit-or-miss morphological transforms for ATR,” in Applications of Digital Image Processing XII, J. Neffs, ed., Proc. SPIE1153, 500–510 (1989). [CrossRef]
  27. D. P. Casasent, E. C. Botha, “Optical correlator production system neural net,” Appl. Opt. 31, 1030–1040 (1992). [CrossRef] [PubMed]
  28. K. Al-Ghoneim, D. P. Casasent, “High-accuracy pipelined iterative-tree optical multiplication,” Appl. Opt. 33, 1517–1527 (1994). [CrossRef] [PubMed]
  29. M. S. Alam, “Parallel optical computing using recoded trinary signed-digit numbers,” Appl. Opt. 33, 4392–4397 (1994). [CrossRef] [PubMed]
  30. D. P. Casasent, P. Woodford, “Symbolic substitution modified signed-digit optical adder,” Appl. Opt. 33, 1498–1506 (1994). [CrossRef] [PubMed]
  31. A. Huang, “Parallel algorithms for optical digital computers,” in Proceedings of the Tenth International Optical Computing Conference, S. Horvitz, ed. (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1983), pp. 13–17. [CrossRef]
  32. A. Louri, “Throughput enhancement for optical symbolic substitution systems,” Appl. Opt. 29, 2979–2980 (1990). [CrossRef] [PubMed]
  33. A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. Electron. Comput. EC-10, 389–400 (1961). [CrossRef]
  34. H. E. Michel, A. A. S. Awwal, “Noise and cross talk study in an optical neural network,” in Proceedings of the National and Aerospace Electronics Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1996), pp. 662–669.
  35. R. P. Webb, “Performance of an optoelectronic neural network in the presence of noise,” Appl. Opt. 34, 5230–5240 (1995). [CrossRef] [PubMed]
  36. S. Yamamoto, R. Sekura, J. Yamanaka, T. Ebihara, N. Kato, H. Hosi, “Optical recognition with LAPS-SLM,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 273–283 (1990). [CrossRef]
  37. M. Roe, K. Schnehrer, “High-speed and high-contrast operation of ferroelectric liquid crystal optically addressed spatial light modulators,” Opt. Eng. 32, 1662–1667 (1993). [CrossRef]
  38. J. Gallant, “Futurebus+ standards spur commercial products,” Electron. Design News 37(18), 51–64 (1992).
  39. M. Jerome, “The fastest PCs in the world,” PC Computing 15 (8), 183–192 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited