OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 11 — Apr. 10, 1998
  • pp: 2170–2176

Characteristics of Recording and Thermal Fixing in Lithium Niobate

Bo Liu, Liren Liu, and Liangying Xu  »View Author Affiliations


Applied Optics, Vol. 37, Issue 11, pp. 2170-2176 (1998)
http://dx.doi.org/10.1364/AO.37.002170


View Full Text Article

Acrobat PDF (185 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical model in which the band-transport equations and the coupled-wave equations are considered to study the two thermal-fixing methods (simultaneous fixing and postfixing) in Fe:LiNbO3. We found that, in simultaneous fixing, the existing ionic-grating affects the writing of the electronic grating by reduction of the coupling gain, and the grating envelope of the fixed-index grating is quite uniform inside the photorefractive crystal in comparison with the method of postfixing. The resulting diffraction efficiency of the fixed-volume grating is dependent mainly on the initial intensity modulation of the two writing beams. A set of experiments is also presented.

© 1998 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.3730) Materials : Lithium niobate

Citation
Bo Liu, Liren Liu, and Liangying Xu, "Characteristics of Recording and Thermal Fixing in Lithium Niobate," Appl. Opt. 37, 2170-2176 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-11-2170


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70–76 (1995).
  2. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, and L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996).
  3. J. J. Amodei, W. Phillips, and D. L. Staebler, “Improved electro-optic materials and fixing techniques for holographic recording,” Appl. Opt. 11, 390–396 (1972).
  4. D. L. Staebler, W. J. Burke, and J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
  5. L. Arizmendi, “Thermal fixing of holographic gratings in Bi12SiO20,” J. Appl. Phys. 65, 423–427 (1989).
  6. F. Micheron and G. Bismuch, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
  7. S. Redfield and L. Hesselink, “Enhanced nondestructive holographic readout in strontium barium niobate,” Opt. Lett. 13, 880–882 (1988).
  8. D. Von der Linde, A. M. Glass, and K. F. Rogers, “Multiphoton photorefractive process for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
  9. A. Yariv, S. S. Orlov, and G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996).
  10. G. Montemezzani, M. Zgonik, and P. Gunter, “Photorefractive charge compensation at elevated temperature and application to KNbO3,” J. Opt. Soc. Am B 10, 171–185 (1993).
  11. A. Yariv, S. S. Orlov, G. A. Rakuljic, and V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
  12. S. Orlov, D. Psaltis, and R. R. Neurgaonkar, “Dynamic electronic compensation of fixed gratings in photorefractive media,” Appl. Phys. Lett. 63, 2466–2468 (1993).
  13. M. Carrascosa and F. Agulló-López, “Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
  14. R. Matull and R. A. Rupp, “Microphotometric investigation of fixed holograms,” J. Phys. D 21, 1556–1565 (1988).
  15. V. V. Kulikov and S. I. Stepanov, “Mechanisms of holographic recording and thermal fixing in photorefractive LiNbO3:Fe,” Sov. Phys. Solid State 21, 1849–1851 (1979).
  16. P. Hertel, K. H. Ringhofer, and R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
  17. N. K. Kukhtarev, “Kinetics of hologram recording and erasure in electro-optic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).
  18. M. Jeganathan, M. C. Bashaw, and L. Hesselink, “Evolution and propagation of grating envelopes during erasure in bulk photorefractive media,” J. Opt. Soc. Am. B 12, 1370–1383 (1995).
  19. P. Yeh, “Two-wave mixing in nonlinear media,” J. Quantum Electron. 25, 484–519 (1989).
  20. H. Vormann, G. Weber, S. Kapphan, and E. Kratzig, “Hydrogen as origin of thermal fixing in LiNbO3,” Solid State Commun. 40, 543–545 (1981).
  21. R. Muller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3214 (1992).
  22. M. Weyer, P. Wurfer, R. Munser, and G. Muller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
  23. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
  24. W. Josch, R. Munser, W. Ruppel, and P. Wurfer, “The photovoltaic effect and the charge transport in LiNbO3,” Ferroelectrics 21, 623–625 (1977).
  25. E. Kratzig and R. Orlowski, “Light-induced charge transport in doped LiNbO3 and TiTaO3,” Ferroelectrics 27, 241–244 (1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited