OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 12 — Apr. 20, 1998
  • pp: 2185–2198

Submillimeter Fourier-transform spectrometer measurements of atmospheric opacity above Mauna Kea

E. Serabyn, E. W. Weisstein, D. C. Lis, and J. R. Pardo  »View Author Affiliations

Applied Optics, Vol. 37, Issue 12, pp. 2185-2198 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present accurately calibrated submillimeter atmospheric transmission spectra obtained with a Fourier-transform spectrometer at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. These measurements cover the 0.9–0.3-mm wavelength range and are the first in a series aimed at defining the terrestrial long-wave atmospheric transmission curve. The 4.1-km altitude of the Mauna Kea site provides access to extremely low zenith water-vapor columns, permitting atmospheric observations at frequencies well above those possible from sea level. We describe the calibration procedures, present our first well-calibrated transmission spectra, and compare our results with those of a single-layer atmospheric transmission model, AT. With an empirical best-fit continuum opacity term included, this simple single-layer model provides a remarkably good fit to the opacity data for H2O line profiles described by either van Vleck–Weisskopf or kinetic shapes.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics

Original Manuscript: February 12, 1997
Revised Manuscript: November 3, 1997
Published: April 20, 1998

E. Serabyn, E. W. Weisstein, D. C. Lis, and J. R. Pardo, "Submillimeter Fourier-transform spectrometer measurements of atmospheric opacity above Mauna Kea," Appl. Opt. 37, 2185-2198 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. A. Traub, M. T. Stier, “Theoretical atmospheric transmission in the mid- and far-infrared at four altitudes,” Appl. Opt. 15, 364–377 (1976). [CrossRef] [PubMed]
  2. A. Deepak, T. D. Wilkerson, L. H. Ruhnke, Atmospheric Water Vapor (Academic, New York, 1980).
  3. J. W. Waters, “Absorption and emission by atmospheric gases,” in Methods of Experimental Physics 12B: Astrophysics, M. L. Meeks, ed. (Academic, New York, 1976), pp. 142–176. [CrossRef]
  4. D. P. Rice, P. A. R. Ade, “Absolute measurements of the atmospheric transparency at short millimetre wavelengths,” Infrared Phys. 19, 575–584 (1979). [CrossRef]
  5. H. J. Liebe, “An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millimeter Waves 10, 631–650 (1989). [CrossRef]
  6. P. W. Rosenkranz, “Absorption of microwaves by atmospheric gases,” in Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, ed. (Wiley, New York, 1993), pp. 37–79.
  7. W. B. Grant, “Water vapor absorption coefficients in the 8-13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990). [CrossRef] [PubMed]
  8. P. W. Rozenkranz, “Pressure broadening of rotational bands. I. A statistical theory,” J. Chem. Phys. 83, 6139–6144 (1985). [CrossRef]
  9. S. A. Clough, F. X. Kneizys, R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–241 (1989). [CrossRef]
  10. Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990). [CrossRef]
  11. H. J. Liebe, “The atmospheric water vapor continuum below 300 GHz,” Int. J. Infrared Millimeter Waves 5, 207–227 (1984). [CrossRef]
  12. R. L. de Zafra, M. Jamarillo, J. Barrett, L. K. Emmons, A. Parrish, P. M. Solomon, “Measurement of atmospheric opacity at 278 GHz at McMurdo station, Antarctica in austral spring seasons, 1986 and 1987,” Int. J. Infrared Millimeter Waves 11, 463–467 (1990). [CrossRef]
  13. R. A. Chamberlin, J. Bally, “225-GHz atmospheric opacity of the South Pole sky derived from continual radiometric measurements of the sky-brightness temperature,” Appl. Opt. 33, 1095–1099 (1994). [CrossRef] [PubMed]
  14. I. G. Nolt, T. Z. Martin, C. W. Wood, W. M. Sinton, “Far infrared absorption of the atmosphere above 4.2 km,” J. Atmos. Sci. 28, 238–241 (1971). [CrossRef]
  15. R. E. Hills, A. S. Webster, D. A. Alston, P. L. R. Morse, C. C. Zammit, D. H. Martin, D. P. Rice, E. I. Robson, “Absolute measurements of atmospheric emission and absorption in the range 100–1000 GHz,” Infrared Phys. 18, 819–825 (1978). [CrossRef]
  16. D. A. Naylor, T. A. Clark, A. A. Schultz, G. R. Davis, “Atmospheric transmission at submillimetre wavelengths from Mauna Kea,” Mon. Not. R. Astron. Soc. 251, 199–202 (1991).
  17. E. Serabyn, E. W. Weisstein, “Calibration of planetary brightness temperature spectra at near-millimeter and submillimeter wavelengths with a Fourier-transform spectrometer,” Appl. Opt. 35, 2752–2763 (1996). [CrossRef] [PubMed]
  18. E. Serabyn, E. W. Weisstein, “Fourier transform spectroscopy of the Orion molecular cloud core,” Astrophys. J. 451, 238–251 (1995). [CrossRef]
  19. H. J. Liebe, “Atmospheric water vapor: a nemesis for millimeter wave propagation,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhnke, eds. (Academic, New York, 1980), pp. 143–201.
  20. E. Grossman, AT User’s Manual (Airhead Software, 2069 Bluff Street, Boulder, Colo. 80302, 1989).
  21. M. L. Salby, Fundamentals of Atmospheric Physics (Academic, New York, 1996), Chap. 8.
  22. Eccosorb AN-72, Emerson & Cumming, Inc., Woburn, Mass. 01888.
  23. M. L. Kutner, B. L. Ulich, “Recommendations for calibration of millimeter-wavelength spectral line data,” Astrophys. J. 250, 341–348 (1981). [CrossRef]
  24. B. L. Ulich, R. W. Haas, “Absolute calibration of millimeter-wavelength spectral lines,” Astrophys. J. Suppl. 30, 247–258 (1976). [CrossRef]
  25. D. H. Martin, “Polarizing (Martin–Puplett) interferometric spectrometers for the near- and submillimeter spectra,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1982), Vol. 6, pp. 65–148.
  26. T. J. Sodroski, “Large-scale characteristics of interstellar dust from COBE DIRBE observations” Astrophys. J. 428, 638–646 (1994). [CrossRef]
  27. M. G. Hauser, “IRAS observations of the diffuse infrared background,” Astrophys. J. 278, L15–L18 (1984). [CrossRef]
  28. J. C. Mather, “Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument,” Astrophys. J. 420, 439–444 (1994). [CrossRef]
  29. A. Blanco, S. Fonti, M. Mancarella, A. Piacente, “Reflectivity measurements of Eccosorb,” Infrared Phys. 25, 561–562 (1985). [CrossRef]
  30. R. Goody, Principles of Atmospheric Physics and Chemistry (Oxford U. Press, Oxford, 1995), p. 35.
  31. M. McKinnon, “Measurement of atmospheric opacity due to water vapor at 225 GHz,” Millimeter Array Memo 40 (National Radio Astronomy Observatory, Socorro, N.M., 1987).
  32. R. L. Poynter, H. M. Pickett, “Submillimeter, millimeter, and microwave spectral line catalog,” Appl. Opt. 24, 2235–2240 (1985), also http://spec.jpl.nasa.gov/ . [CrossRef] [PubMed]
  33. E. Serabyn, E. W. Weisstein, D. C. Lis, “FTS atmospheric transmission measurements and observations of planetary atmospheres,” in The Physics and Chemistry of Interstellar Molecular Clouds, G. Winnewisser, G. C. Pelz, eds. (Springer-Verlag, Berlin, 1995), pp. 377–379. [CrossRef]
  34. B. L. Ulich, “Improved correction for millimeter-wavelength atmospheric attenuation,” Astrophys. Lett. 21, 21–28 (1980).
  35. C. C. Zammit, P. A. R. Ade, “Zenith atmospheric attenuation measurements at millimetre and sub-millimetre wavelengths,” Nature (London) 293, 550–552 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited