OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 12 — Apr. 20, 1998
  • pp: 2264–2270

Rotational line strengths and self-pressure-broadening coefficients for the 1.27-μm, a 1Δ g X 3Σ g -, v = 0–0 band of O2

Walter J. Lafferty, Alexander M. Solodov, Catherine L. Lugez, and Gerald T. Fraser  »View Author Affiliations

Applied Optics, Vol. 37, Issue 12, pp. 2264-2270 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (222 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measured at 296 K the rotational line strengths and pressure-broadening coefficients for the 1.27-μm, a1Δ g X3Σ g -, v = 0–0 band of O2 with a Fourier transform infrared spectrometer using an optical path length of 84 m, a spectral resolution of 0.01 cm-1, and sample pressures between 13 and 104 kPa. The integrated band strength is 7.79(17) × 10-6 m-2 Pa-1 [7.89(17) × 10-5 cm-2 atm-1], and the Einstein A coefficient for spontaneous emission is 2.237(51) × 10-4 s-1, which corresponds to an upper-state 1/e lifetime of 1.24(3) h. The pressure-broadening coefficients decrease with increasing N and range from 19 to 38 MHz/kPa (FWHM). The mean value for the transitions studied is 30.3(21) MHz/kPa [0.1024(71) cm-1/atm] (FWHM). The Einstein A coefficient determined here is in good agreement with the widely accepted value of 2.58 × 10-4 s-1 initially obtained by Badger et al. [J. Chem. Phys. 43, 4345 (1965)] more than 30 years ago. The standard uncertainties given above are one standard deviation.

© 1998 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(010.4950) Atmospheric and oceanic optics : Ozone
(020.3690) Atomic and molecular physics : Line shapes and shifts
(300.1030) Spectroscopy : Absorption
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

Original Manuscript: August 18, 1997
Revised Manuscript: November 3, 1997
Published: April 20, 1998

Walter J. Lafferty, Alexander M. Solodov, Catherine L. Lugez, and Gerald T. Fraser, "Rotational line strengths and self-pressure-broadening coefficients for the 1.27-μm, a1Δg–X3Σg-, v = 0–0 band of O2," Appl. Opt. 37, 2264-2270 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Herzberg, G. Herzberg, “Fine structure of the infrared atmospheric oxygen bands,” Astrophys. J. 105, 353–359 (1947). [CrossRef]
  2. R. P. Lowe, “Interferometric spectra of the Earth’s airglow (1.2 to 1.6-μm),” Philos. Trans. R. Soc. London Ser. A 264, 163–169 (1969). [CrossRef]
  3. R. J. Thomas, C. A. Barth, D. W. Rusch, R. W. Sanders, “Solar mesosphere explorer near-infrared spectrometer: measurements of the 1.27-μm radiances and the inference of mesospheric ozone,” J. Geophys. Res. 89, 9569–9580 (1984). [CrossRef]
  4. J. M. Russell, M. G. Mlynczak, L. L. Gordley, “Overview of the Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) experiment for the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) mission,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research, J. Wang, P. B. Hays, eds., Proc. SPIE2266, pp. 406–414 (1994). [CrossRef]
  5. W. A. Traub, N. P. Carleton, P. Connes, J. F. Noxon, “The latitude variation of O2 dayglow and O2 abundance on Mars,” Astrophys. J. 229, 846–850 (1979). [CrossRef]
  6. M. G. Mlynczak, B. T. Marshall, “A reexamination of the role of the solar heating in the O2 atmospheric and infrared atmospheric bands,” Geophys. Res. Lett. 23, 657–660 (1996). [CrossRef]
  7. M. G. Mlynczak, D. S. Olander, “On the utility of the molecular oxygen dayglow emissions as proxies for middle atmospheric ozone,” Geophys. Res. Lett. 22, 1377–1380 (1995). [CrossRef]
  8. M. G. Mlynczak, D. J. Nesbitt, “The Einstein coefficient for spontaneous emission of the O2 (a1Δg) state,” Geophys. Res. Lett. 22, 1381–1384 (1995). [CrossRef]
  9. R. M. Badger, A. C. Wright, R. F. Whitlock, “Absolute intensities of the discrete and continuous absorption bands of oxygen gas at 1.26 and 1.065 μ and the radiative lifetime of the 1Δg state of oxygen,” J. Chem. Phys. 43, 4345–4350 (1965). [CrossRef]
  10. Y. T. Hsu, Y. P. Lee, J. F. Ogilvie, “Intensities of lines in the band a1Δg(v′ = 0)–X3Σg-(v″ = 0) of 16O2 in absorption,” Spectrochim. Acta 9, 1227–1230 (1992).
  11. L.-B. Lin, Y.-P. Lee, J. F. Ogilvie, “Linestrengths of the band a1Δg(v′ = 0)–X3Σg-(v″ = 0) of 16O2,” J. Quant. Spectrosc. Radiat. Transfer 5, 375–380 (1988). [CrossRef]
  12. W. R. Pendleton, D. J. Baker, R. J. Reese, R. R. O’Neil, “Decay of O2(a1Δg) in the evening twilight airglow: implications for the radiative lifetime,” Geophys. Res. Lett. 23, 1013–1016 (1996). [CrossRef]
  13. R. R. Gamache, A. Goldman, L. S. Rothman, “Improved spectral parameters for the three most abundant isotopomers of the oxygen molecule,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  14. C. Amiot, J. Verges, “The magnetic dipole a1Δg(v′ = 0)–X3Σg- transition in the oxygen afterglow,” Can. J. Phys. 59, 1391–1398 (1981). [CrossRef]
  15. Y. Endo, M. Mizushima, “Microwave resonance lines of 16O2 in its electronic ground state (X3Σg-),” Jpn. J. Appl. Phys. 21, L379–L380 (1982). [CrossRef]
  16. K. W. Hillig, C. C. W. Chiu, W. G. Read, E. A. Cohen, “The pure rotation spectrum of a1Δg O2,” J. Mol. Spectrosc. 109, 205–206 (1985). [CrossRef]
  17. G. Rouillé, G. Millot, R. Saint-Loup, H. Berger, “High-resolution stimulated Raman spectroscopy of O2,” J. Mol. Spectrosc. 154, 372–382 (1992). [CrossRef]
  18. 1996 version of the HITRAN database described in L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth , “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer48, 469–507 (1992).A CDROM version of the 1996 database is available from L. S. Rothman, Harvard Observatory, P-248, Harvard University, Cambridge, Mass. 02138.
  19. L. Wallace, W. Livingston, “Spectroscopic observations of atmospheric trace gases over Kitt Peak: 1. Carbon dioxide and methane from 1979 to 1985,” J. Geophys. Res. 95, 9823–9827 (1990). [CrossRef]
  20. D. C. Tobin, L. L. Strow, W. J. Lafferty, W. B. Olson, “Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vapor,” Appl. Opt. 35, 4724–4734 (1996). [CrossRef] [PubMed]
  21. E. E. Whiting, A. Schadee, J. B. Tatum, J. T. Hougen, R. W. Nicholls, “Recommended conventions for defining transition moments and intensity factors in diatomic molecular spectra,” J. Mol. Spectrosc. 80, 249–256 (1980). [CrossRef]
  22. E. E. Whiting, R. W. Nicholls, “Reinvestigation of rotational-line intensity factors in diatomic spectra,” Astrophys. J. Suppl. No. 235 27, 1–19 (1974). [CrossRef]
  23. T. K. Balasubramanian, V. P. Bellary, “Intensity distribution in the rotational structure of 1Δ–3Σ and 1Π–3Σ transitions in diatomic molecules,” J. Mol. Spectrosc. 63, 249–255 (1988).
  24. V. P. Bellary, T. K. Balasubramanian, “On the rotational intensity distribution in the a1Δg → X3Σg- magnetic dipole transition of oxygen molecule,” J. Mol. Spectrosc. 126, 436–442 (1987). [CrossRef]
  25. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, New York, 1950), p. 21.
  26. R. L. Gattinger, A. Vallance Jones, “Observation and interpretation of O2 1.27-μ emission enhancements in aurora,” J. Geophy. Res. 78, 8305–8313 (1973). [CrossRef]
  27. W. F. J. Evans, H. C. Wood, E. J. Llewellyn, “Ground-based photometric observations of the 1.27 μ band of O2 in the twilight airglow,” Planet. Space Sci. 18, 1065–1073 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited