OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 12 — Apr. 20, 1998
  • pp: 2441–2447

Modeling of the influence of snow reflectance on ultraviolet irradiance for cloudless sky

Jacqueline Lenoble  »View Author Affiliations

Applied Optics, Vol. 37, Issue 12, pp. 2441-2447 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The amplification of UV irradiance at the Earth’s surface that is due to successive reflections between the snow-covered ground and the scattering atmosphere is analyzed by a method based on decoupling the atmosphere and the surface functions. For a uniform Lambertian surface the amplification factor for the global irradiance depends only on the product of the surface reflectance and the atmospheric backscatter. It varies with wavelength, reaching a maximum near 320 nm; this maximum is close to 50% for clean snow. In UV-B the amplification depends strongly on tropospheric ozone. For non-Lambertian, nonuniform surfaces it is possible, by the same method, to define effective or average reflectances.

© 1998 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(120.5700) Instrumentation, measurement, and metrology : Reflection
(260.0260) Physical optics : Physical optics
(260.7190) Physical optics : Ultraviolet

Original Manuscript: May 14, 1997
Revised Manuscript: January 5, 1998
Published: April 20, 1998

Jacqueline Lenoble, "Modeling of the influence of snow reflectance on ultraviolet irradiance for cloudless sky," Appl. Opt. 37, 2441-2447 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Madronich, “Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the Earth’s surface,” Geophys. Res. Lett. 19, 37–40 (1992). [CrossRef]
  2. C. S. Weiler, P. A. Penhale, eds., Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, Vol. 62 of Antarctic Research Series (American Geophysical Union, Washington, D.C., 1994).
  3. R. D. Bojkov, L. Bishop, V. E. Fioletov, “Total ozone trends from quality-controlled ground-based data (1964–1994),” J. Geophys. Res. 100, 25,867–25,876 (1995). [CrossRef]
  4. K. Stamnes, “The stratosphere as a modulator of ultraviolet radiation into the biosphere,” Surv. Geophys. 14, 167–186 (1993). [CrossRef]
  5. B. G. Gardiner, P. J. Kirsch, “Setting standards for European ultraviolet spectroradiometers,” final report, contract STEP- CT 900076 (European Commission, Brussels, Belgium, 1995).
  6. J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994). [CrossRef]
  7. P. Weihs, A. Webb, “Accuracy of spectral UV model calculations I. Consideration of uncertainties in input parameters,” J. Geophys. Res. 102, 1541–1550 (1996). [CrossRef]
  8. T. F. Eck, P. K. Bhartia, P. H. Hwang, L. L. Stowe, “Reflectivity of Earth’s surface and clouds in ultraviolet from satellite observations,” J. Geophys. Res. 92, 4287–4296 (1987). [CrossRef]
  9. C. Leroux, “Etude théorique et expérimentale de la réflectance de la neige dans le spectre solaire. Application à la télédétection,” Ph.D. dissertation (Université des Sciences et Technologies de Lille, Lille, France, 1996).
  10. U. Feister, R. Grewe, “Spectral albedo measurements in the UV and visible region over different types of surfaces,” Photochem. Photobiol. 62, 736–744 (1995). [CrossRef]
  11. M. Blumthaler, W. Ambach, “Solar UV albedo of various surfaces,” Photochem. Photobiol. 48, 85–88 (1988). [CrossRef] [PubMed]
  12. B. L. Diffey, “A comparison of dosimeters used for solar ultraviolet radiometry,” Photochem. Photobiol. 46, 55–60 (1987). [CrossRef] [PubMed]
  13. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1949).
  14. D. Tanré, M. Herman, P. Y. Deschamps, A. de Leffe, “Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties,” Appl. Opt. 18, 3587–3594 (1979). [CrossRef]
  15. D. Tanré, M. Herman, P. Y. Deschamps, “Influence of the background contribution upon space measurements of ground reflectance,” Appl. Opt. 20, 3676–3684 (1981). [CrossRef]
  16. D. Tanré, M. Herman, P. Y. Deschamps, “Influence of the atmosphere on space measurements of directional properties,” Appl. Opt. 22, 733–741 (1983). [CrossRef]
  17. J. Lenoble, Atmospheric Radiative Transfer (Deepak, Hampton, Va., 1993).
  18. J. W. Hovenier, “A unified treatment of polarized light emerging from a homogeneous plane-parallel atmosphere,” Astron. Astrophys. 183, 363–370 (1987).
  19. International Association for Meteorology and Atmospheric Physics, “A preliminary cloudless standard atmosphere for radiation computation,” report WCP-112, WMO/TD-NO.24 (International Association for Meteorology and Atmospheric Physics, World Meteorological Organisation, Geneva, Switzerland, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited