OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 12 — Apr. 20, 1998
  • pp: 2499–2501

Frequency Modulation Multiplexing for Simultaneous Detection of Multiple Gases by use of Wavelength Modulation Spectroscopy with Diode Lasers

Daniel B. Oh, Mark E. Paige, and David S. Bomse  »View Author Affiliations


Applied Optics, Vol. 37, Issue 12, pp. 2499-2501 (1998)
http://dx.doi.org/10.1364/AO.37.002499


View Full Text Article

Acrobat PDF (137 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Modulation frequency multiplexing provides a straightforward method, analogous to television or radio broadcasting, for performing simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers. When fiber-optic coupled lasers are used, our approach guarantees that all beams transit the same optical path and impinge on the same detector. Each laser is modulated at a different frequency and the detector output is processed by a set of lock-in amplifiers, one for each laser, to measure the absorbance encountered by each laser.

© 1998 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(130.6010) Integrated optics : Sensors
(140.2020) Lasers and laser optics : Diode lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(300.0300) Spectroscopy : Spectroscopy
(300.6380) Spectroscopy : Spectroscopy, modulation

Citation
Daniel B. Oh, Mark E. Paige, and David S. Bomse, "Frequency Modulation Multiplexing for Simultaneous Detection of Multiple Gases by use of Wavelength Modulation Spectroscopy with Diode Lasers," Appl. Opt. 37, 2499-2501 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-12-2499


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. C. Stanton and J. A. Silver, “Measurements in the HCl 3 ← 0 band using a near-IR InGaAsP diode laser,” Appl. Opt. 24, 5009–5015 (1988).
  2. J. A. Silver, D. S. Bomse, and A. C. Stanton, “Diode laser measurements of trace concentrations of ammonia in an entrained-flow coal reactor,” Appl. Opt. 30, 1505–1511 (1991).
  3. D. S. Bomse, “Dual-modulation laser line-locking scheme,” Appl. Opt. 30, 2922–2924 (1991).
  4. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
  5. D. S. Bomse, A. C. Stanton, and J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
  6. J. A. Silver and D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
  7. D. C. Hovde, A. C. Stanton, T. P. Meyers, and D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. 20, 141–162 (1995).
  8. E. I. Moses and C. L. Tang, “High-sensitivity laser wavelength-modulation spectroscopy,” Opt. Lett. 1, 115–117 (1977).
  9. J. Reid, M. El-Sherbiny, B. K. Garside, and E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer with application to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
  10. J. Reid and D. Labrie, “Second harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
  11. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982).
  12. M. P. Arroyo, T. P. Birbeck, D. S. Baer, and R. K. Hanson, “Dual diode-laser fiber-optic diagnostic for water-vapor measurements,” Opt. Lett. 19, 1091–1093 (1994).
  13. D. S. Baer, R. K. Hanson, M. E. Newfield, and N. K. J. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1903 (1994).
  14. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, and R. A. Toth, “HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
  15. D. R. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited