OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 13 — May. 1, 1998
  • pp: 2534–2541

Polarizing Mirror/Absorber for Visible Wavelengths Based on a Silicon Subwavelength Grating: Design and Fabrication

David L. Brundrett, Thomas K. Gaylord, and Elias N. Glytsis  »View Author Affiliations

Applied Optics, Vol. 37, Issue 13, pp. 2534-2541 (1998)

View Full Text Article

Acrobat PDF (426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A one-dimensional 280-nm period silicon grating designed to exhibitpolarization-dependent reflection or antireflection behavior at visiblewavelengths has been fabricated and tested. For normally incident575-nm light, this grating reflects less than 3% of the incidentradiation polarized perpendicular to the grating grooves andapproximately 23% of the orthogonal polarization. To demonstratethe grating’s broadband characteristics, reflectance measurements arepresented over the free-space wavelength range 475 nm < λ0 < 800 nm, for angles of incidence in the range 0° < θ < 40°, for polarization parallel and perpendicular to thegrating grooves, and for planes of incidence parallel and perpendicularto the grooves. A description of the fabrication process is alsogiven.

© 1998 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(260.5430) Physical optics : Polarization
(310.1210) Thin films : Antireflection coatings

David L. Brundrett, Thomas K. Gaylord, and Elias N. Glytsis, "Polarizing Mirror/Absorber for Visible Wavelengths Based on a Silicon Subwavelength Grating: Design and Fabrication," Appl. Opt. 37, 2534-2541 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492–494 (1983).
  2. R. C. Enger and S. K. Case, “High-frequency holographic transmission gratings in photoresist,” J. Opt. Soc. Am. 73, 1113–1118 (1983).
  3. R. C. Enger and S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983).
  4. F. Keilman, “Polarized mirror for optical radiation,” Bundesrepublik Deutchland Patent DE 3707984 A1 (22 September 1988).
  5. L. Cescato, E. Gluch, and N. Streibl, “Holographic quarterwave plates,” Appl. Opt. 29, 3286–3290 (1990).
  6. S. Aoyama and T. Yamashita, “Grating beam splitting polarizer using multilayer resist method,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner and W. R. McKinney, eds., Proc. SPIE 1545, 241–250 (1991).
  7. N. Davidson, A. A. Friesem, and E. Hasman, “Computer-generated relief gratings as space-variant polarization elements,” Opt. Lett. 17, 1541–1543 (1992).
  8. E. N. Glytsis and T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31, 4459–4470 (1992).
  9. C. W. Haggans, L. Li, T. Fujita, and R. K. Kostuk, “Lamellar gratings as polarization components for specularly reflected beams,” J. Mod. Opt. 40, 675–686 (1993).
  10. M. Schmitz, R. Bräuer, and O. Bryngdahl, “Gratings in the resonance domain as polarizing beam splitters,” Opt. Lett. 20, 1830–1831 (1995).
  11. M. Schmitz, R. Bräuer, and O. Bryngdahl, “Phase gratings with subwavelength structures,” J. Opt. Soc. Am. A 12, 2458–2462 (1995).
  12. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35, 6195–6202 (1996).
  13. R. E. Smith, M. E. Warren, J. R. Wendt, and G. A. Vawter, “Polarization-sensitive subwavelength antireflection surfaces on a semiconductor for 975 nm,” Opt. Lett. 21, 1201–1203 (1996).
  14. L. Zhuang, S. Schablitsky, R. C. Shi, and S. Y. Chou, “Fabrication and performance of an amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization,” J. Vac. Sci. Technol. B 14, 4055–4057 (1996).
  15. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beamsplitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997).
  16. K. H. Brenner and A. Huang, “Optical implementations of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988).
  17. K. M. Johnson, M. R. Surette, and J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
  18. T. J. Cloonan and A. L. Lentine, “Self-routing crossbar packet switch employing free-space optics for chip-to-chip interconnections,” Appl. Opt. 30, 3721–3733 (1991).
  19. T. J. Cloonan, G. W. Richards, A. L. Lentine, F. B. McCormick, H. S. Hinton, and S. J. Hinterlong, “A complexity analysis of smart pixel switching nodes for photonic extended generalized shuffle switching networks,” IEEE J. Quantum Electron. 28, 619–634 (1993).
  20. C. Waterson and B. K. Jenkins, “Passive optical interconnection network employing a shuffle–exchange topology,” Appl. Opt. 33, 1575–1586 (1994).
  21. Y. Hayasaki, I. Tohyama, T. Yatagai, M. Mori, and S. Ishihara, “Reversal-input superposing technique for all-optical neural networks,” Appl. Opt. 33, 1477–1484 (1994).
  22. G. Yayla, A. V. Krishnamoorthy, G. C. Marsden, and S. C. Esener, “A prototype 3D optically interconnected neural network,” Proc. IEEE 82, 1749–1762 (1994).
  23. G. A. D. Biase, “Optical multistage interconnection networks for large-scale multiprocessor systems,” Appl. Opt. 27, 2017–2021 (1988).
  24. K. M. Iftekharuddin and M. A. Karim, “Butterfly interconnection network: design of multiplier, flip-flop, and shift register,” Appl. Opt. 33, 1457–1462 (1994).
  25. H. S. Hinton, T. J. Cloonan, F. B. J. McCormick, A. L. Lentine, and F. A. P. Tooley, “Free-space digital optical systems,” Proc. IEEE 82, 1632–1649 (1994).
  26. J. Tanida, T. Konishi, and Y. Ichioka, “P-opals: pure optical-parallel array logic system,” Proc. IEEE 82, 1668–1677 (1994).
  27. T. K. Gaylord, E. N. Glytsis, and M. G. Moharam, “Zero-reflectivity homogeneous layers and high-spatial frequency surface-relief gratings on lossy materials,” Appl. Opt. 26, 3123–3135 (1987).
  28. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
  29. C. W. Haggans, L. Li, and R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
  30. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695–2706 (1994).
  31. P. Lalanne and D. Lemercier-Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450–458 (1997).
  32. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
  33. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
  34. A. Bodere, D. Carpentier, A. Accard, and B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Mater. Sci. Eng. B 28, 293–295 (1994).
  35. N. F. Hartman and T. K. Gaylord, “Antireflection gold surface relief gratings: experimental characteristics,” Appl. Opt. 27, 3738–3743 (1988).
  36. T. H. Tanner and M. Fahoum, “A study of the surface parameters of ground and lapped metal surfaces, using specular and diffuse reflection of laser light,” Wear 36, 299–316 (1976).
  37. D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, D. F. Edwards, ed. (Academic, Orlando, Fla., 1985), pp. 500–559.
  38. E. H. Anderson, C. M. Horwitz, and H. I. Smith, “Holographic lithography with thick photoresist,” Appl. Phys. Lett. 43, 874–875 (1983).
  39. M. L. Schattenburg, C. R. Canizares, D. Dewey, K. A. Flanagan, M. A. Hamnett, A. M. Levine, K. S. K. Lum, R. Manikkalingam, T. H. Markert, and H. I. Smith, “Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility,” Opt. Eng. 30, 1590–1600 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited