OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 13 — May. 1, 1998
  • pp: 2729–2734

Integrated-Optic Array Illuminator: A New Design for Guided-Wave Optical Interconnections

Tingdi Liao and Stephen Sheard  »View Author Affiliations


Applied Optics, Vol. 37, Issue 13, pp. 2729-2734 (1998)
http://dx.doi.org/10.1364/AO.37.002729


View Full Text Article

Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An integrated array illuminator can be used not only as an opticalpower distributor for an array of guided-wave optic devices but also asa key element for guided-wave optical interconnections. We presenta new design for an integrated-optic array illuminator with focusingwaveguide diffractive doublet arrays. This integrated arrayilluminator allows independent optimizations of efficient and uniformoptical power distribution and focusing performance. Furthermore, the device can be fabricated with all-optical lithographic technologyand hence has the advantages of mass production with lowcost.

© 1998 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(050.1970) Diffraction and gratings : Diffractive optics
(110.5220) Imaging systems : Photolithography
(130.0130) Integrated optics : Integrated optics
(200.4650) Optics in computing : Optical interconnects

Citation
Tingdi Liao and Stephen Sheard, "Integrated-Optic Array Illuminator: A New Design for Guided-Wave Optical Interconnections," Appl. Opt. 37, 2729-2734 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-13-2729


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. S. Tocci and H. J. Caufield, Optical Interconnection: Foundations and Applications (Artech House, Norwood, Mass., 1994).
  2. L. J. Camp, R. Sharma, and M. R. Feldman, “Guided-wave and free-space optical interconnects for parallel processing systems: a comparison,” Appl. Opt. 33, 6168–6180 (1994).
  3. C. Jones, K. Cooper, M. Nield, R. Waller, J. Rush, J. Collins, P. Fiddyment, and I. Lealman, “Hybrid integration using silica-on-silicon optical motherboards,” in Integrated Photonics Research, Vol. 6, 1996 OSA Technical Digest Series (Optical Society of America, Washington, DC, 1996), pp. 604–607.
  4. M. Takeda and T. Kubota, “Integrated optic array illuminator: a design for efficient and uniform power distribution,” Appl. Opt. 30, 1090–1096 (1991).
  5. T. Kubota and M. Takeda, “Array illuminator using grating couplers,” Opt. Lett. 14, 651–652 (1989).
  6. T. Nakaya, Y. Katoh, T. Kubota, and M. Takeda, “Diffraction efficiency of a grating coupler for array illuminator,” Appl. Opt. 35, 3891–3898 (1996).
  7. J. M. Miller, N. De Beaucoudrey, P. Chavel, J. Turunen, and E. Cambril, “Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection,” Appl. Opt. 36, 5717–5727 (1997).
  8. S. H. Song and E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995).
  9. S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–917 (1986).
  10. S. J. Sheard, T. D. Liao, G. Yang, P. R. Prewett, and J. G. Zhu, “Focusing waveguide grating coupler using diffractive doublet,” Appl. Opt. 36, 4349–4353 (1997); Diffractive Optics and Micro Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 360–363.
  11. T. D. Liao and S. J. Sheard, “Radiation characteristics of waveguide diffractive doublets,” Appl. Opt. 37, 1776–1783 (1998).
  12. D. A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffraction phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).
  13. W. H. Welch, J. E. Morris, and M. R. Feldman, “Iterative discrete on-axis encoding of radially symmetrical computer-generated holograms,” J. Opt. Soc. Am. A 10, 1729–1738 (1993).
  14. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
  15. R. L. Roncone, L. Li, K. A. Bates, J. J. Burke, L. Weisenbach, and B. J. J. Zelinski, “Design and fabrication of a single leakage-channel grating coupler,” Appl. Opt. 32, 4522–4528 (1993).
  16. J. C. Brazas, L. Li, and A. L. McKeon, “High-efficiency input coupling into optical waveguides using grating with double-surface corrugation,” Appl. Opt. 34, 604–609 (1995).
  17. I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
  18. M. Li and S. J. Sheard, “Waveguide couplers using parallelogramic-shaped blazed gratings,” Opt. Commun. 109, 239–245 (1994).
  19. T. D. Liao, S. J. Sheard, M. Li, J. Zhu, and P. Prewett, “High-efficiency focusing grating coupler with parallelogramic groove profiles,” J. Lightwave Technol. 15, 1142–1148 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited