OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 13 — May. 1, 1998
  • pp: 2755–2765

Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance

Edward L. Hull, Michael G. Nichols, and Thomas H. Foster  »View Author Affiliations

Applied Optics, Vol. 37, Issue 13, pp. 2755-2765 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a steady-state method for localizing a source of luminescence (i.e., fluorescence or phosphorescence) buried in a semi-infinite turbid medium with unknown optical properties. A diffusion theory expression describing the emittance of an isotropic point source is fit to spatially resolved surface measurements of the diffuse emittance from the luminescent source. The technique reports the location of the center of a 6.0-mm-diameter, fluorophore-containing spherical bulb embedded in a liquid phantom with an accuracy of 1.0 mm or better for source depths as great as 40.0 mm. Monte Carlo data are analyzed to investigate the range and the possible sources of error in the reconstructed source depth.

© 1998 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(260.2510) Physical optics : Fluorescence
(260.3800) Physical optics : Luminescence
(300.2530) Spectroscopy : Fluorescence, laser-induced

Original Manuscript: June 23, 1997
Revised Manuscript: October 23, 1997
Published: May 1, 1998

Edward L. Hull, Michael G. Nichols, and Thomas H. Foster, "Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescence emittance," Appl. Opt. 37, 2755-2765 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For recent collections of articles on this and closely related subjects, see Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano , eds., Proc. SPIE2979 (1997) and Advances in Optical Imaging Photon Migration, R. R. Alfano, J. G. Fujimoto , eds., Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  2. J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994). [CrossRef] [PubMed]
  3. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995). [CrossRef] [PubMed]
  4. J. Chang, H. L. Graber, R. L. Barbour, “Image reconstruction of dense scattering media from cw sources using constrained CGD and a matrix rescaling technique,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 682–691 (1995). [CrossRef]
  5. D. A. Benaron, J. P. Van Houten, W.-F. Cheong, E. L. Kermit, R. A. King, “Early clinical results of time-of-flight optical tomography in a neonatal intensive care unit,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 582–596 (1995). [CrossRef]
  6. R. R. Alfano, A. Pradhan, G. C. Tang, “Optical spectroscopic diagnosis of cancer in normal and breast tissues,” J. Opt. Soc. Am. B 6, 1015–1023 (1989). [CrossRef]
  7. R. M. Cothren, R. Richards-Kortum, M. V. Sivak, M. Fitzmaurice, R. P. Rava, G. A. Boyce, M. Doxtader, R. Blackman, T. B. Ivanc, G. B. Hayes, M. S. Feld, R. E. Petras, “Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy,” Gastrointest. Endosc. 36, 105–111 (1990). [CrossRef] [PubMed]
  8. J. Hung, S. Lam, J. C. LeRiche, B. Palcic, “Autofluorescence of normal and malignant bronchial tissue,” Lasers Surg. Med. 11, 99–105 (1991). [CrossRef] [PubMed]
  9. A. Mahadevan, M. F. Mitchell, E. Silve, S. Thomsen, R. R. Richards-Kortum, “Study of the fluorescence properties of normal and neoplastic cervical tissue,” Lasers Surg. Med. 13, 647–655 (1993). [CrossRef]
  10. S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence imaging and point measurements of tissue: applications to the demarcation of malignant tumors and atherosclerotic lesions from normal tissue,” Photochem. Photobiol. 53, 807–814 (1991). [PubMed]
  11. E. Reddi, A. Segalla, G. Jori, P. K. Kerrigan, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, “Carotenoporphyrins as selective photodiagnostic agents for tumours,” Br. J. Cancer 69, 40–45 (1994). [CrossRef] [PubMed]
  12. T. Takemura, S. Nakajima, I. Sakata, “Tumor-localizing fluorescent diagnostic agents without phototoxicity,” Photochem. Photobiol. 59, 366–370 (1994). [CrossRef] [PubMed]
  13. K. W. Woodburn, Q. Fan, D. R. Miles, D. Kessel, Y. Luo, S. W. Young, “Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model,” Photochem. Photobiol. 65, 410–415 (1997). [CrossRef] [PubMed]
  14. S. A. Vinogradov, D. F. Wilson, “Metallotetrabenzoporphyrins. New phosphorescent probes for oxygen measurements,” J. Chem. Soc. Perkin Trans. 2, 103–111 (1995).
  15. S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, D. F. Wilson, “Noninvasive imaging of the distribution of oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996). [CrossRef] [PubMed]
  16. C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995). [CrossRef] [PubMed]
  17. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996). [CrossRef] [PubMed]
  18. J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995). [CrossRef] [PubMed]
  19. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997). [CrossRef] [PubMed]
  20. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999–R3002 (1991). [CrossRef]
  21. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Luminesc. 60–61, 281–286 (1994). [CrossRef]
  22. A. Knüttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993). [CrossRef]
  23. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996). [CrossRef] [PubMed]
  24. J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997). [CrossRef]
  25. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  26. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  27. A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissue,” Phys. Med. Biol. 40, 1957–1975 (1995). [CrossRef] [PubMed]
  28. M. Keijzer, W. M. Star, P. R. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988). [CrossRef] [PubMed]
  29. R. A. J. Groenhuis, H. A. Ferwerda, J. J. T. Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory,” Appl. Opt. 22, 2456–2462 (1983). [CrossRef] [PubMed]
  30. M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997). [CrossRef] [PubMed]
  31. A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997). [CrossRef]
  32. M. R. Lewis, H. A. Sloviter, P. P. Goland, “In vivo staining and retardation of growth of sarcomata in mice,” Anat. Rec. 95, 89–96 (1946). [CrossRef]
  33. L. Cincotta, J. W. Foley, T. MacEachern, L. Lampros, A. H. Cincotta, “Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas,” Cancer Res. 54, 1249–1258 (1994). [PubMed]
  34. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.
  35. L. Wang, S. L. Jacques, L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed. 47, 131–146 (1995). [CrossRef]
  36. M. G. Nichols, “Transport of oxygen and light in model tumor systems,” Ph.D. dissertation (University of Rochester, Rochester, N.Y., 1996).
  37. J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Tomographic detection of fluorophores embedded in tissue-like phantom,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends In Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 116–118.
  38. D. F. Wilson, G. J. Cerniglia, “Localization of tumors and evaluation of their state of oxygenation by phosphorescence imaging,” Cancer Res. 52, 3988–3993 (1992). [PubMed]
  39. W. L. Rumsey, J. M. Vanderkooi, D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue,” Science 241, 1649–1651 (1988). [CrossRef] [PubMed]
  40. M. A. J. Rodgers, “The photoproperties of porphyrins in model biological environments,” in Photodynamic Therapy of Tumors and Other Diseases (Libreria Progetto Editore, Padova, Italy, 1985), pp. 21–35.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited