OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 13 — May. 1, 1998
  • pp: 2766–2773

Multiphoton fluorescence excitation in continuous-wave infrared optical traps

Zhanxiang Zhang, Gregory J. Sonek, Hong Liang, Michael W. Berns, and Bruce J. Tromberg  »View Author Affiliations


Applied Optics, Vol. 37, Issue 13, pp. 2766-2773 (1998)
http://dx.doi.org/10.1364/AO.37.002766


View Full Text Article

Enhanced HTML    Acrobat PDF (653 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The multiphoton fluorescence excitation observed in a continuous-wave (cw) single-beam gradient force optical trap (optical tweezers) is reported for latex beads labeled with a yellow-green fluorescent dye (BODIPY). The fluorescence emission spectra of the yellow-green beads trapped and excited by the same 1064-nm laser light are identical to the spectra excited by the 365-nm UV light. The influence of the numerical aperture of the objective on the slope of the log–log power-dependence has been demonstrated for BODIPY–Oil solution under cw and pulsed-laser conditions. The possibility that three-photon excitation process occurs is discussed within the context of a dog-bone saturation model. Other possibilities for the observed fluorescence excitation have been discussed.

© 1998 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(190.4180) Nonlinear optics : Multiphoton processes

History
Original Manuscript: August 21, 1997
Revised Manuscript: January 15, 1998
Published: May 1, 1998

Citation
Zhanxiang Zhang, Gregory J. Sonek, Hong Liang, Michael W. Berns, and Bruce J. Tromberg, "Multiphoton fluorescence excitation in continuous-wave infrared optical traps," Appl. Opt. 37, 2766-2773 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-13-2766


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  3. K. Svoboda, S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994). [CrossRef] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of single cells using infrared laser beams,” Ber. Busenges. Phys. Chem. 93, 254–260 (1989). [CrossRef]
  5. S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley-Liss, New York, 1990), pp. 372–402.
  6. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68, 2137–2144 (1995). [CrossRef] [PubMed]
  7. Y. Liu, G. J. Sonek, M. W. Berns, K. Konig, B. J. Tromberg, “Two-photon fluorescence excitation in continuous-wave infrared optical tweezers,” Opt. Lett. 20, 2246–2248 (1995). [CrossRef] [PubMed]
  8. K. Konig, H. Liang, M. W. Berns, B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996). [CrossRef] [PubMed]
  9. P. E. Hanninen, E. Soini, S. W. Hell, “Continuous wave excitation two-photon fluorescence microscopy,” J. Microsc. 176, 222–225 (1994). [CrossRef]
  10. E. Florin, J. K. H. Horber, E. H. K. Stelzer, “High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd:YAG laser,” Appl. Phys. Lett. 69, 446–448 (1996). [CrossRef]
  11. C. Xu, J. Guild, W. W. Webb, W. Denk, “Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation,” Opt. Lett. 20, 2372–2374 (1995). [CrossRef] [PubMed]
  12. C. Xu, W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996). [CrossRef]
  13. S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).
  14. J. D. Bhawalkar, G. S. He, P. N. Prasad, “Three-photon induced upconverted fluorescence from an organic compound: application to optical power limiting,” Opt. Commun. 119, 587–590 (1995). [CrossRef]
  15. I. Gryczynski, H. Malak, J. R. Lakowicz, “Three-photon fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:Sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995). [CrossRef]
  16. I. Gryczynski, H. Szmacinski, J. R. Lakowicz, “On the possibility of calcium imaging using Indo-1 with three-photon excitation,” Photonchem. Photonbiol. 62, 804–808 (1995). [CrossRef]
  17. A. P. Davey, E. Bourdin, F. Henari, W. J. Blau, “Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion,” Appl. Phys. Lett. 67, 884–885 (1995). [CrossRef]
  18. J. B. Shear, E. B. Brown, W. W. Webb, “Multiphoton-excited fluorescence of fluorogen-labeled neurotransmitters,” Anal. Chem. 68, 1778–1783 (1996). [CrossRef] [PubMed]
  19. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  20. S. H. Lin, Y. Fujimura, H. J. Neusser, E. W. Schlag, Multiphoton Spectroscopy of Molecules (Academic, Harcourt Brace Jovanovich, San Diego, Calif., 1984).
  21. H. C. Kang, R. P. Haugland, P. J. Fisher, F. G. Prendergast, “Spectral properties of 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromenthen-1,1′-borondifuloride complex (BODIPY), its sodium salt, and protein derivatives,” in New Technologies in Cytometry, G. C. Salzman, ed., Proc. SPIE1063, 68–73 (1989). [CrossRef]
  22. F. H. M. Faisal, Theory of Multiphoton Processes (Plenum, New York, 1986).
  23. S. Speiser, J. Jortner, “The 3/2 power law for high order multiphoton processes,” Chem. Phys. Lett. 44, 399–403 (1976). [CrossRef]
  24. S. Speiser, S. Skimel, “On the possibility of observing photochemical reactions induced by multiphoton absorption,” Chem. Phys. Lett. 7, 19–22 (1970). [CrossRef]
  25. C. Schwan, A. Penzkofer, N. J. Marx, K. H. Drexhage, “Phased-matched third-harmonic generation of Nd:glass-laser picosecond pulses in a new cyanine-dye solution,” Appl. Phys. B 57, 203–211 (1993). [CrossRef]
  26. W. Leupacher, A. Penzkofer, B. Runde, K. H. Drexhage, “Efficient phase-matched third-harmonic light generation in Hexafluoroisopropanol solutions of a pyrimidonecarbocyanine dye,” Appl. Phys. B 44, 133–140 (1987). [CrossRef]
  27. A. Penzkofer, W. Leupacher, “Experimental and theoretical investigation of third-harmonic generation in phase-matched dye solutions,” Opt. Quantum Electron. 20, 227–256 (1988). [CrossRef]
  28. P. P. Bey, J. F. Giuliani, H. Rabin, “Enhanced optical third-harmonic generation by coupled nonlinear absorption,” IEEE J. Quantum Electron. QE-7, 86–88 (1971). [CrossRef]
  29. J. C. Diels, F. P. Chafer, “Phase-matched third-harmonic generation in dye solutions,” Appl. Phys. 5, 197–202 (1974). [CrossRef]
  30. R. K. Chang, L. K. Galbraith, “Optical third-harmonic generation in dye solutions,” Phys. Rev. 171, 993–996 (1968). [CrossRef]
  31. C. Zander, K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995). [CrossRef]
  32. A. A. Ruth, F. J. O’Keeffe, M. W. D. Mansfield, R. P. Brint, “The resonance-enhanced multiphoton excitation spectrum of jet-cooled 4-H-1-benzopyrane-4-thione,” Chem. Phys. Lett. 264, 605–613 (1997). [CrossRef]
  33. V. V. Sapunov, “Kinetics of triplet–triplet annihilation in liquid solutions,” Opt. Spectrosc. 79, 558–563 (1995).
  34. B. Nickel, H. E. Wilhelm, A. A. Ruth, “Anti-Smoluchowski time dependence of the delayed fluorescence from anthracence in viscous solution due to triplet–triplet annihilation. Effect of Forster energy transfer S1 + T1 → S0 + Tn on the initial spatial distribution of molecules in T1,” Chem. Phys. Lett. 188, 267–287 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited