OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 13 — May. 1, 1998
  • pp: 2766–2773

Multiphoton Fluorescence Excitation in Continuous-Wave Infrared Optical Traps

Zhanxiang Zhang, Gregory J. Sonek, Hong Liang, Michael W. Berns, and Bruce J. Tromberg  »View Author Affiliations

Applied Optics, Vol. 37, Issue 13, pp. 2766-2773 (1998)

View Full Text Article

Acrobat PDF (653 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The multiphoton fluorescence excitation observed in acontinuous-wave (cw) single-beam gradient force optical trap(optical tweezers) is reported for latex beads labeled with ayellow-green fluorescent dye (BODIPY). The fluorescenceemission spectra of the yellow-green beads trapped and excited by thesame 1064-nm laser light are identical to the spectra excited by the365-nm UV light. The influence of the numerical aperture of theobjective on the slope of the log–log power-dependence has beendemonstrated for BODIPY–Oil solution under cw and pulsed-laserconditions. The possibility that three-photon excitation processoccurs is discussed within the context of a dog-bone saturationmodel. Other possibilities for the observed fluorescence excitationhave been discussed.

© 1998 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(190.4180) Nonlinear optics : Multiphoton processes

Zhanxiang Zhang, Gregory J. Sonek, Hong Liang, Michael W. Berns, and Bruce J. Tromberg, "Multiphoton Fluorescence Excitation in Continuous-Wave Infrared Optical Traps," Appl. Opt. 37, 2766-2773 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
  3. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
  4. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of single cells using infrared laser beams,” Ber. Busenges. Phys. Chem. 93, 254–260 (1989).
  5. S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, J. K. Foskett and S. Grinstein, eds. (Wiley-Liss, New York, 1990), pp. 372–402.
  6. Y. Liu, D. K. Cheng, G. J. Sonek, M. W. Berns, C. F. Chapman, and B. J. Tromberg, “Evidence for localized cell heating induced by infrared optical tweezers,” Biophys. J. 68, 2137–2144 (1995).
  7. Y. Liu, G. J. Sonek, M. W. Berns, K. Konig, and B. J. Tromberg, “Two-photon fluorescence excitation in continuous-wave infrared optical tweezers,” Opt. Lett. 20, 2246–2248 (1995).
  8. K. Konig, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996).
  9. P. E. Hanninen, E. Soini, and S. W. Hell, “Continuous wave excitation two-photon fluorescence microscopy,” J. Microsc. 176, 222–225 (1994).
  10. E. Florin, J. K. H. Horber, and E. H. K. Stelzer, “High-resolution axial and lateral position sensing using two-photon excitation of fluorophores by a continuous-wave Nd:YAG laser,” Appl. Phys. Lett. 69, 446–448 (1996).
  11. C. Xu, J. Guild, W. W. Webb, and W. Denk, “Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation,” Opt. Lett. 20, 2372–2374 (1995).
  12. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
  13. S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Grycznski, and J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biochem. Opt. 1, 71–74 (1996).
  14. J. D. Bhawalkar, G. S. He, and P. N. Prasad, “Three-photon induced upconverted fluorescence from an organic compound: application to optical power limiting,” Opt. Commun. 119, 587–590 (1995).
  15. I. Gryczynski, H. Malak, and J. R. Lakowicz, “Three-photon fluorescence of 2,5-diphenyloxazole with a femtosecond Ti:Sapphire laser,” Chem. Phys. Lett. 245, 30–35 (1995).
  16. I. Gryczynski, H. Szmacinski, and J. R. Lakowicz, “On the possibility of calcium imaging using Indo-1 with three-photon excitation,” Photonchem. Photonbiol. 62, 804–808 (1995).
  17. A. P. Davey, E. Bourdin, F. Henari, and W. J. Blau, “Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion,” Appl. Phys. Lett. 67, 884–885 (1995).
  18. J. B. Shear, E. B. Brown, and W. W. Webb, “Multiphoton-excited fluorescence of fluorogen-labeled neurotransmitters,” Anal. Chem. 68, 1778–1783 (1996).
  19. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  20. S. H. Lin, Y. Fujimura, H. J. Neusser, and E. W. Schlag, Multiphoton Spectroscopy of Molecules (Academic, Harcourt Brace Jovanovich, San Diego, Calif., 1984).
  21. H. C. Kang, R. P. Haugland, P. J. Fisher, and F. G. Prendergast, “Spectral properties of 4-sulfonato-3,3′, 5,5′-tetramethyl-2,2′-pyrromenthen-1,1′-borondifuloride complex (BODIPY), its sodium salt, and protein derivatives,” in New Technologies in Cytometry, G. C. Salzman, ed., Proc. SPIE 1063, 68–73 (1989).
  22. F. H. M. Faisal, Theory of Multiphoton Processes (Plenum, New York, 1986).
  23. S. Speiser and J. Jortner, “The 3/2 power law for high order multiphoton processes,” Chem. Phys. Lett. 44, 399–403 (1976).
  24. S. Speiser and S. Skimel, “On the possibility of observing photochemical reactions induced by multiphoton absorption,” Chem. Phys. Lett. 7, 19–22 (1970).
  25. C. Schwan, A. Penzkofer, N. J. Marx, and K. H. Drexhage, “Phased-matched third-harmonic generation of Nd:glass-laser picosecond pulses in a new cyanine-dye solution,” Appl. Phys. B 57, 203–211 (1993).
  26. W. Leupacher, A. Penzkofer, B. Runde, and K. H. Drexhage, “Efficient phase-matched third-harmonic light generation in Hexafluoroisopropanol solutions of a pyrimidonecarbocyanine dye,” Appl. Phys. B 44, 133–140 (1987).
  27. A. Penzkofer and W. Leupacher, “Experimental and theoretical investigation of third-harmonic generation in phase-matched dye solutions,” Opt. Quantum Electron. 20, 227–256 (1988).
  28. P. P. Bey, J. F. Giuliani, and H. Rabin, “Enhanced optical third-harmonic generation by coupled nonlinear absorption,” IEEE J. Quantum Electron. QE-7, 86–88 (1971).
  29. J. C. Diels and F. P. Chafer, “Phase-matched third-harmonic generation in dye solutions,” Appl. Phys. 5, 197–202 (1974).
  30. R. K. Chang and L. K. Galbraith, “Optical third-harmonic generation in dye solutions,” Phys. Rev. 171, 993–996 (1968).
  31. C. Zander and K. H. Drexhage, “Cooling of a dye solution by anti-Stokes fluorescence,” Adv. Photochem. 20, 59–78 (1995).
  32. A. A. Ruth, F. J. O’Keeffe, M. W. D. Mansfield, and R. P. Brint, “The resonance-enhanced multiphoton excitation spectrum of jet-cooled 4-H-1-benzopyrane-4-thione,” Chem. Phys. Lett. 264, 605–613 (1997).
  33. V. V. Sapunov, “Kinetics of triplet–triplet annihilation in liquid solutions,” Opt. Spectrosc. 79, 558–563 (1995).
  34. B. Nickel, H. E. Wilhelm, and A. A. Ruth, “Anti-Smoluchowski time dependence of the delayed fluorescence from anthracence in viscous solution due to triplet–triplet annihilation. Effect of Forster energy transfer S1 + T1 → S0 + Tn on the initial spatial distribution of molecules in T1,” Chem. Phys. Lett. 188, 267–287 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited