OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 13 — May. 1, 1998
  • pp: 2781–2787

Influence of the emission–reception geometry in laser-induced fluorescence spectra from turbid media

Sigrid Avrillier, Eric Tinet, Dominique Ettori, Jean-Michel Tualle, and Bernard Gélébart  »View Author Affiliations


Applied Optics, Vol. 37, Issue 13, pp. 2781-2787 (1998)
http://dx.doi.org/10.1364/AO.37.002781


View Full Text Article

Enhanced HTML    Acrobat PDF (191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Routine clinical detection of precancerous lesions by laser-induced autofluorescence was recently demonstrated in several medical fields. This technique is based on the analysis of complex spectra with overlapping broad structures. However, in biological tissues, scattering and absorption are wavelength dependent, and the observed fluorescence signals are distorted when the illumination and detection geometry varies, making comparison of results from different groups difficult. We study this phenomenon experimentally in human tissue in a simple experiment: A fiber is used for the excitation and an identical fiber is used for reception of the signal; both fibers are maintained in contact with the tissue. We study the distortion of the spectra as a function of the distance between the two fibers. For correction of the spectra we show that it is possible to use a fast and accurate ab initio Monte Carlo simulation when the spectral variations of the optical properties of the medium are known. The main advantage of this simulation is its applicability even for complex boundary conditions or when the sample consists of several layers.

© 1998 Optical Society of America

OCIS Codes
(170.6930) Medical optics and biotechnology : Tissue
(170.7050) Medical optics and biotechnology : Turbid media
(260.2510) Physical optics : Fluorescence
(300.6170) Spectroscopy : Spectra

History
Original Manuscript: October 21, 1997
Revised Manuscript: January 16, 1998
Published: May 1, 1998

Citation
Sigrid Avrillier, Eric Tinet, Dominique Ettori, Jean-Michel Tualle, and Bernard Gélébart, "Influence of the emission–reception geometry in laser-induced fluorescence spectra from turbid media," Appl. Opt. 37, 2781-2787 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-13-2781

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited