OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 37, Iss. 13 — May. 1, 1998
  • pp: 2788–2797

Optical scattering properties of soft tissue: a discrete particle model

Joseph M. Schmitt and Gitesh Kumar  »View Author Affiliations

Applied Optics, Vol. 37, Issue 13, pp. 2788-2797 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (369 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a micro-optical model of soft biological tissue that permits numerical computation of the absolute magnitudes of its scattering coefficients. A key assumption of the model is that the refractive-index variations caused by microscopic tissue elements can be treated as particles with sizes distributed according to a skewed log-normal distribution function. In the limit of an infinitely large variance in the particle size, this function has the same power-law dependence as the volume fractions of the subunits of an ideal fractal object. To compute a complete set of optical coefficients of a prototypical soft tissue (single-scattering coefficient, transport scattering coefficient, backscattering coefficient, phase function, and asymmetry parameter), we apply Mie theory to a volume of spheres with sizes distributed according to the theoretical distribution. A packing factor is included in the calculation of the optical cross sections to account for correlated scattering among tightly packed particles. The results suggest that the skewed log-normal distribution function, with a shape specified by a limiting fractal dimension of 3.7, is a valid approximation of the size distribution of scatterers in tissue. In the wavelength range 600 ≤ λ ≤ 1400 nm, the diameters of the scatterers that contribute most to backscattering were found to be significantly smaller (λ/4–λ/2) than the diameters of the scatterers that cause the greatest extinction of forward-scattered light (3–4λ).

© 1998 Optical Society of America

OCIS Codes
(170.6930) Medical optics and biotechnology : Tissue
(290.0290) Scattering : Scattering
(350.4990) Other areas of optics : Particles

Original Manuscript: August 18, 1997
Revised Manuscript: December 2, 1997
Published: May 1, 1998

Joseph M. Schmitt and Gitesh Kumar, "Optical scattering properties of soft tissue: a discrete particle model," Appl. Opt. 37, 2788-2797 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Patterson, “Noninvasive measurements of tissue optical properties: current status and future prospects,” Comments Mol. Cell. Biophys. A 8, 387–417 (1995).
  2. I. J. Bigio, J. R. Mourant, J. D. Boyer, T. M. Johnson, T. Shimada, R. L. Conn, “Noninvasive identification of bladder cancer with subsurface backscattered light,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2135, 26–35 (1994). [CrossRef]
  3. B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992). [CrossRef]
  4. G. Tearney, M. E. Brezinsky, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto,” Science 276, 2037–2039 (1997).
  5. B. Beauvoit, T. Kitai, B. Chance, “Contribution of the mitochondrial component to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994). [CrossRef] [PubMed]
  6. J. M. Schmitt, G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996). [CrossRef] [PubMed]
  7. G. Kumar, J. M. Schmitt, “Micro-optical properties of tissue,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases III: Optical Biopsy, R. R. Alfano, A. Katzir, eds., Proc. SPIE2679, 106–116 (1996). [CrossRef]
  8. J. Beuthan, O. Minet, J. Helfmann, M. Herrig, G. Müller, “The spatial variation of the refractive index in biological cells,” Phys. Med. Biol. 41, 369–382 (1996). [CrossRef] [PubMed]
  9. A. Dunn, R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2, 898–905 (1996). [CrossRef]
  10. B. Türke, G. Seger, M. Achatz, W. van Seelen, “Fourier optical approach to the extraction of morphological parameters from the diffraction pattern of biological cells,” Appl. Opt. 17, 2754–2761 (1978). [CrossRef] [PubMed]
  11. V. Twersky, “Transparency of pair-correlated, random distributions of small scatterers, with applications to the cornea,” J. Opt. Soc. Am. 65, 524–530 (1975). [CrossRef] [PubMed]
  12. R. Barer, K. F. A. Ross, S. Tkaczyk, “Refractometry of living cells,” Nature (London) 171, 720–724 (1953). [CrossRef]
  13. A. Brunsting, P. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14, 439–453 (1974). [CrossRef] [PubMed]
  14. G. D. Weinstein, R. J. Boucek, “Collagen and elastin of human dermis,” J. Invest. Dermatol. 35, 227–229 (1960). [PubMed]
  15. T. D. Scholz, S. R. Fleagle, T. L. Burns, D. J. Skorton, “Nuclear magnetic resonance relaxometry of the normal heart: relationship between collagen content and relaxation times of the four chambers,” Magn. Reson. Imag. 7, 643–648 (1989). [CrossRef]
  16. M. Rojkind, M. A. Giambrone, L. Biempica, “Collagen types in normal and cirrhotic liver,” Gastroenterology 76, 710 (1979). [PubMed]
  17. B. J. West, “Physiology in fractal dimensions: error tolerance,” Ann. Biomed. Eng. 18, 135–149 (1990). [CrossRef] [PubMed]
  18. H. Honda, S. Imayama, M. Tanemura, “A fractal-like structure in skin,” Fractals 4, 139–147 (1996). [CrossRef]
  19. B. Gélébart, E. Tinet, J.-M. Tualle, S. Avrillier, “Phase function simulation in tissue phantoms: a fractal approach,” Pure Appl. Opt. 5, 377–388 (1996). [CrossRef]
  20. D. Hamburger, O. Biham, D. Avnir, “Apparent fractality emerging from models of random distributions,” Phys. Rev. E 53, 3442–3458 (1996). [CrossRef]
  21. M. Kerker, The Scattering of Light and other Electromagnetic Radiation (Academic, San Diego, Calif., 1969), pp. 351–359.
  22. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, Calif., 1982), Chap. 12.
  23. J. M. Schmitt, A. Knüttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993). [CrossRef] [PubMed]
  24. A. Ishimaru, Y. Kuga, “Attenuation constant of a coherent field in a dense distribution of particles,” J. Opt. Soc. Am. 72, 1317–1320 (1982). [CrossRef]
  25. V. Twersky, “Acoustic bulk parameters in distributions of pair-correlated scatterers,” J. Acoust. Soc. Am. 64, 1710–1719 (1978). [CrossRef]
  26. P. A. J. Bascom, R. S. C. Cobbold, “On the fractal packing approach for understanding ultrasonic backscattering from blood,” J. Acoust. Soc. Am. 98, 3040–3049 (1995). [CrossRef] [PubMed]
  27. F. A. Duck, Physical Properties of Tissue (Academic, New York, 1990), Chap. 9.
  28. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Appendix A.
  29. S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nanometers,” Med. Phys. 14, 835–841 (1987). [CrossRef] [PubMed]
  30. P. Van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993). [CrossRef]
  31. V. Khare, H. M. Nussenzveig, “The theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977). [CrossRef]
  32. W. F. Cheong, “Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 275–303.
  33. P. Parsa, S. L. Jacques, N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330 (1989). [CrossRef] [PubMed]
  34. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, M. S. Feld, “Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta,” Appl. Opt. 28, 4286–4292 (1989). [CrossRef] [PubMed]
  35. G. Yoon, “Absorption and scattering of laser light in biological media—mathematical modeling and methods for determining optical properties,” Ph.D. dissertation (University of Texas, Austin, Tex., 1988).
  36. J. N. Qu, C. MacAulay, S. Lam, B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt. 33, 7397–7405 (1994). [CrossRef] [PubMed]
  37. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef] [PubMed]
  38. J. M. Schmitt, A. Knüttel, M. Yadlowsky, M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994). [CrossRef] [PubMed]
  39. J. F. Beek, H. J. van Staveren, P. Posthumus, H. J. C. M. Sterenborg, M. J. C. van Gemert, “The influence of respiration on the optical properties of piglet lung at 632.8 nm,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. (SPIE Optical Engineering Press, Bellingham, Wash., 1993), Vol. IS11, pp. 193–210.
  40. M. Essenpreis, Thermally Induced Changes in Optical Properties of Biological Tissues (University College London, England, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited