OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 14 — May. 10, 1998
  • pp: 2811–2821

Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses

Eva M. Strzelecka, Duane A. Louderback, Brian J. Thibeault, Geoff B. Thompson, Kent Bertilsson, and Larry A. Coldren  »View Author Affiliations


Applied Optics, Vol. 37, Issue 14, pp. 2811-2821 (1998)
http://dx.doi.org/10.1364/AO.37.002811


View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the use of low-threshold 980-nm vertical-cavity surface-emitting lasers for free-space optical interconnects. The vertical-cavity surface-emitting lasers and backilluminated detectors are monolithically integrated with microlenses on the back sides of the growth substrates to eliminate the necessity of external optics. With a channel pitch of 250 μm, an interconnect length between boards of the order of 5 to 10 mm with a ±50-μm lateral alignment tolerance can be achieved without external relay optics. The complete link is modeled to predict the system’s efficiency and maximum bit rate. Data transmission at 500 Mbits/s per channel is demonstrated. The data rate was limited by parasitics, not the inherent bandwidth of the laser diodes.

© 1998 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(200.4650) Optics in computing : Optical interconnects
(220.3630) Optical design and fabrication : Lenses
(350.3950) Other areas of optics : Micro-optics

History
Original Manuscript: June 6, 1997
Revised Manuscript: October 28, 1997
Published: May 10, 1998

Citation
Eva M. Strzelecka, Duane A. Louderback, Brian J. Thibeault, Geoff B. Thompson, Kent Bertilsson, and Larry A. Coldren, "Parallel free-space optical interconnect based on arrays of vertical-cavity lasers and detectors with monolithic microlenses," Appl. Opt. 37, 2811-2821 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-14-2811


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  2. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992). [CrossRef]
  3. J. Jahns, F. Sauer, B. Tell, K. F. Brown-Goebeler, A. Y. Feldblum, C. R. Nijander, W. P. Townsend, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Optics Commun. 109, 328–337 (1994). [CrossRef]
  4. Y. Li, T. Wang, R. A. Linke, “VCSEL-array-based angle-multiplexed optoelectronics crossbar interconnects,” Appl. Opt. 35, 1282–1295 (1996). [CrossRef] [PubMed]
  5. V. N. Morozov, Y. C. Lee, J. A. Neff, D. O’Brien, T. S. McLaren, H. Zhou, “Tolerance analysis for three-dimensional optoelectronic systems and packaging,” Opt. Eng. 35, 2034–2044 (1996). [CrossRef]
  6. D. V. Plant, B. Robertson, H. S. Hinton, M. H. Ayliffe, G. C. Boisset, W. Hsiao, D. Kabal, N. H. Kim, Y. S. Liu, M. R. Otazo, D. Pavlasek, A. Z. Shang, J. Simons, K. Song, D. A. Thompson, W. M. Robertson, “4 × 4 vertical-cavity surface-emitting laser (VCSEL) and metal–semiconductor–metal (MSM) optical backplane demonstrator system,” Appl. Opt. 35, 6365–6368 (1996). [CrossRef] [PubMed]
  7. D. B. Schwartz, C. K. Y. Chun, B. M. Foley, D. H. Hartman, M. Lebby, H. C. Lee, Shieh Chan Long, S. M. Kuo, S. G. Shook, B. Webb, “A low-cost high-performance optical interconnect,” IEEE Trans. Components Packag. Manuf. 19, 532–539 (1996). [CrossRef]
  8. W. S. Ishak, K. H. Hahn, B. L. Booth, C. Muheller, A. A. J. Levi, R. Craig, “Optical interconnects: the POLO project,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE2400, 214–221 (1995). [CrossRef]
  9. K. D. Choquette, K. L. Lear, R. P. Schneider, K. M. Geib, H. C. Chui , “Selectively oxidized vertical-cavity lasers,” in Proceedings of the IEEE Lasers and Electro-Optics Society Annual Meeting 1995 (IEEE, New York, 1995), pp. 412–413, paper SCL 14.1.
  10. B. J. Thibeault, E. R. Hegblom, P. D. Floyd, R. Naone, Y. Akulova, L. A. Coldren, “Reduced optical scattering loss in vertical-cavity lasers using a thin (300 Å) oxide aperture,” IEEE Photon. Technol. Lett. 8, 593–595 (1996). [CrossRef]
  11. B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, K. J. Ebeling, “High-performance oxide-confined GaAs VCSELs,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997). [CrossRef]
  12. B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, L. A. Coldren, “High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers,” IEEE Photon. Technol. Lett. 9, 11–13 (1997). [CrossRef]
  13. P. Schnitzer, U. Fiedler, M. Grabherr, C. Jung, G. Reiner, W. Zich, L. J. Ebeling, “Bias-free 1 Gbit/s data transmission using singlemode GaAs VCSELs at λ = 835 nm,” Electron. Lett. 32, 2145–2146 (1996). [CrossRef]
  14. E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997). [CrossRef]
  15. E. R. Hegblom, D. I. Babic, B. J. Thibeault, L. A. Coldren, “Estimation of scattering losses in dielectrically apertured vertical cavity lasers,” Appl. Phys. Lett. 68, 1757–1759 (1996). [CrossRef]
  16. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  17. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), pp. 214–217, 235.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited