OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 14 — May. 10, 1998
  • pp: 2822–2830

Optoelectronic systems based on InGaAs–complementary-metal-oxide-semiconductor smart-pixel arrays and free-space optical interconnects

Andrew C. Walker, Tsung-Yi Yang, James Gourlay, Julian A. B. Dines, Mark G. Forbes, Simon M. Prince, Douglas A. Baillie, David T. Neilson, Rhys Williams, Lucy C. Wilkinson, George R. Smith, Mark P. Y. Desmulliez, Gerald S. Buller, Mohammad R. Taghizadeh, Andrew Waddie, Ian Underwood, Colin R. Stanley, Francois Pottier, Brigitte Vögele, and Wilson Sibbett  »View Author Affiliations


Applied Optics, Vol. 37, Issue 14, pp. 2822-2830 (1998)
http://dx.doi.org/10.1364/AO.37.002822


View Full Text Article

Enhanced HTML    Acrobat PDF (517 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Free-space optical interconnects have been identified as a potentially important technology for future massively parallel-computing systems. The development of optoelectronic smart pixels based on InGaAs/AlGaAs multiple-quantum-well modulators and detectors flip-chip solder-bump bonded onto complementary-metal-oxide-semiconductor (CMOS) circuits and the design and construction of an experimental processor in which the devices are linked by free-space optical interconnects are described. For demonstrating the capabilities of the technology, a parallel data-sorting system has been identified as an effective demonstrator. By use of Batcher’s bitonic sorting algorithm and exploitation of a perfect-shuffle optical interconnection, the system has the potential to perform a full sort on 1024, 16-bit words in less than 16 μs. We describe the design, testing, and characterization of the smart-pixel devices and free-space optical components. InGaAs–CMOS smart-pixel, chip-to-chip communication has been demonstrated at 50 Mbits/s. It is shown that the initial system specifications can be met by the component technologies.

© 1998 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.2610) Optics in computing : Free-space digital optics
(200.3050) Optics in computing : Information processing
(200.4650) Optics in computing : Optical interconnects

History
Original Manuscript: August 25, 1997
Revised Manuscript: December 22, 1997
Published: May 10, 1998

Citation
Andrew C. Walker, Tsung-Yi Yang, James Gourlay, Julian A. B. Dines, Mark G. Forbes, Simon M. Prince, Douglas A. Baillie, David T. Neilson, Rhys Williams, Lucy C. Wilkinson, George R. Smith, Mark P. Y. Desmulliez, Gerald S. Buller, Mohammad R. Taghizadeh, Andrew Waddie, Ian Underwood, Colin R. Stanley, Francois Pottier, Brigitte Vögele, and Wilson Sibbett, "Optoelectronic systems based on InGaAs–complementary-metal-oxide-semiconductor smart-pixel arrays and free-space optical interconnects," Appl. Opt. 37, 2822-2830 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-14-2822


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. The National Technology Roadmap for Semiconductors—Technology Needs (Semiconductor Industry Association, San Jose, Calif., 1997).
  2. B. Smith, “Interconnection networks for shared memory parallel computers,” in Proceedings of the Second International Conference on Massively Parallel Processing using Optical Interconnects (Institute of Electrical and Electronics Engineers, New York, 1995), pp. 255–256. [CrossRef]
  3. D. A. B. Miller, H. M. Ozaktas, “Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture,” J. Parallel. Distrib. Comput. 41, 42–52 (1997). [CrossRef]
  4. W. J. Dally, J. Poulton, “Transmitter equalization for 4-Gbps signalling,” IEEE Micro 17, 48–56 (1997). [CrossRef]
  5. F. A. P. Tooley, “Challenges in optically interconnecting electronics,” IEEE J. Sel. Top. Quantum Electron. 2, 3–13 (1996). [CrossRef]
  6. M. P. Y. Desmulliez, F. A. P. Tooley, J. A. B. Dines, N. L. Grant, D. J. Goodwill, D. Baillie, B. S. Wherrett, P. W. Foulk, S. Ashcroft, P. Black, “Perfect-shuffle interconnected bitonic sorter: optoelectronic design,” Appl. Opt. 34, 5077–5090 (1995). [CrossRef] [PubMed]
  7. J. A. B. Dines, “Smart pixel opto-electronic receiver based on a charge sensitive amplifier design,” IEEE J. Sel. Top. Quantum Electron. 2, 117–120 (1996). [CrossRef]
  8. M. J. Goodwin, L. T. D. Caswell, A. D. Parsons, I. Bennion, W. J. Stewart, “8 × 8 element hybridized PLZT silicon spatial light-modulator array,” Electron. Lett. 25, 1260–1262 (1989). [CrossRef]
  9. A. L. Lentine, K. W. Goossen, J. A. Walker, L. M. F. Chirovsky, L. A. Dasaro, S. P. Hui, B. J. Tseng, R. E. Leibenguth, J. E. Cunningham, W. Y. Jan, J. M. Kuo, D. W. Dahringer, D. P. Kossives, D. Bacon, G. Livescu, R. L. Morrison, R. A. Novotny, D. B. Buchholz, “High-speed optoelectronic VLSI switching chip with greater-than-4000 optical i/o based on flip-chip bonding of MQW modulators and detectors to silicon CMOS,” IEEE J. Sel. Top. Quantum Electron. 2, 77–84 (1996). [CrossRef]
  10. T. K. Woodward, A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, J. E. Cunningham, W. Y. Jan, L. A. Dasaro, L. M. F. Chirovsky, S. P. Hui, B. Tseng, D. Kossives, D. Dahringer, R. E. Leibenguth, “1-GB/s 2-beam transimpedance smart-pixel optical receivers made from hybrid GaAs MQW modulators bonded to 0.8 μm silicon CMOS,” IEEE Photon. Technol. Lett. 8, 422–424 (1996). [CrossRef]
  11. D. T. Neilson, L. C. Wilkinson, D. J. Goodwill, A. C. Walker, B. Vogele, M. McElhinney, F. Pottier, C. R. Stanley, “Effects of lattice mismatch due to partially relaxed buffer layers in InGaAs/AlGaAs strain balanced quantum well modulators,” Appl. Phys. Lett. 70, 2031–2033 (1997). [CrossRef]
  12. D. T. Neilson, “Optimization and tolerance analysis of QCSE modulators and detectors,” IEEE J. Quantum Electron. 33, 1094–1103 (1997). [CrossRef]
  13. D. T. Neilson, S. M. Prince, D. A. Baillie, F. A. P. Tooley, “Optical design of a 1024-channel free-space sorting demonstrator,” Appl. Opt. 36, 9243–9252 (1997). [CrossRef]
  14. D. T. Neilson, C. P. Barrett, “Performance trade-offs for conventional lenses for free-space digital optics,” Appl. Opt. 33, 1240–1248 (1996). [CrossRef]
  15. C. P. Barret, P. Blair, G. S. Buller, D. T. Neilson, B. Robertson, E. C. Smith, M. R. Taghizadeh, A. C. Walker, “Components for the implementation of free-space optical crossbars,” Appl. Opt. 35, 6934–6944 (1996). [CrossRef]
  16. J. M. Miller, M. R. Taghizadeh, J. Turnunen, N. Ross, “Multilevel grating array generators: fabrication error analysis and experiments,” Appl. Opt. 32, 2519–2525 (1993). [CrossRef] [PubMed]
  17. M. E. Prise, N. C. Craft, R. E. Lamarch, M. M. Downs, L. A. Dasaro, L. M. F. Chirovsky, “Cascaded operation of arrays of symmetrical self-electro-optic effect devices,” Appl. Opt. 30, 2841–2843 (1991). [CrossRef] [PubMed]
  18. F. B. McCormick, F. A. P. Tooley, J. M. Sasian, T. J. Cloonan, A. L. Lentine, S. J. Hinterlong, M. J. Herron, “Optomechanics of a free-space switch: the system,” in Optomechanics and Dimensional Stability, R. A. Paquin, D. Vukobratovich, eds., Proc. SPIE1533, 97–114 (1991). [CrossRef]
  19. M. P. Y. Desmulliez, B. S. Wherrett, A. J. Waddie, J. F. Snowdon, J. A. B. Dines, “Performance analysis of self-electro-optic-effect-device-based (seed-based) smart-pixel arrays used in data sorting,” Appl. Opt. 35, 6397–6416 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited