OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 14 — May. 10, 1998
  • pp: 2843–2851

Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole)-based photorefractive polymers

Reinhard Bittner, Christoph Bräuchle, and Klaus Meerholz  »View Author Affiliations


Applied Optics, Vol. 37, Issue 14, pp. 2843-2851 (1998)
http://dx.doi.org/10.1364/AO.37.002843


View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of the glass-transition temperature T g and the electro-optical chromophore content on the grating buildup dynamics in photorefractive polymer composites is investigated. The response times were found to be strongly dependent on both parameters. In the low-T g regime, composites of different chromophore content respond similarly quickly (200–500 ms), whereas significant differences occur for T g above the measurement (room) temperature. The composites with the highest chromophore content give the best steady-state performance; however, their response is much slower than that for those containing less chromophore.

© 1998 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(160.5320) Materials : Photorefractive materials
(160.5470) Materials : Polymers
(260.0260) Physical optics : Physical optics

History
Original Manuscript: August 25, 1997
Revised Manuscript: February 9, 1998
Published: May 10, 1998

Citation
Reinhard Bittner, Christoph Bräuchle, and Klaus Meerholz, "Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole)-based photorefractive polymers," Appl. Opt. 37, 2843-2851 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-14-2843


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. S. Chen, “Optically-induced change of the refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3393 (1969). [CrossRef]
  2. K. Sutter, J. Hulliger, P. Günter, “Photorefractive gratings in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyano-quinodimethane,” J. Opt. Soc. Am. B 7, 2274–2278 (1990). [CrossRef]
  3. S. Ducharme, J. C. Scott, R. J. Twieg, W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991). [CrossRef] [PubMed]
  4. K. Meerholz, B. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371, 497–500 (1994). [CrossRef]
  5. A. M. Cox, R. D. Blackburn, D. P. West, T. A. King, F. A. Wade, D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996). [CrossRef]
  6. P. M. Lundquist, R. Wortmann, C. Geletneky, R. J. Twieg, M. Jurich, V. Y. Lee, C. R. Moylan, D. M. Burland, “Organic glasses: a new class of photorefractive materials,” Science 274, 1182–1185 (1996). [CrossRef] [PubMed]
  7. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, W. E. Moerner, “High-performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997). [CrossRef]
  8. F. Würthner, R. Wortmann, R. Matschiner, K. Lakaszuk, K. Meerholz, Y. De Nardin, R. Bittner, C. Bräuchle, R. Sens, “Merocyanine dyes in the cyanine limit: a new class of chromophores for photorefractive materials,” Angew. Chem. Int. Ed. Engl. 36, 2765–2768 (1997). [CrossRef]
  9. W. E. Moerner, S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–156 (1994) and references therein. [CrossRef]
  10. Y. Zhang, R. Burzynski, S. Ghosal, M. K. Casstevens, “Photorefractive polymers and composites,” Adv. Mater. 8, 111–125 (1996) and references therein. [CrossRef]
  11. B. Kippelen, K. Meerholz, N. Peyghambarian, “An introduction to photorefractive polymers,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalva, S. Miyata eds. (CRC, Boca Raton, Fla., 1997), Chap. 8, pp. 465–513, and references therein.
  12. K. Meerholz, “Amorphous plastics pave the way for wide-spread holographic applications,” Angew. Chem. Int. Ed. Eng. 36, 945–948 (1997) and references therein. [CrossRef]
  13. W. E. Moerner, S. M. Silence, F. Hache, G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 22, 320–330 (1994). [CrossRef]
  14. R. Wortmann, C. Poga, R. J. Twieg, C. Geletneky, C. R. Moylan, P. M. Lundquist, R. G. DeVoe, P. M. Cotts, H. Horn, J. E. Rice, D. M. Burland, “Design of optimized photorefractive polymers: a novel class of chromophores,” J. Chem. Phys. 105, 10637–10647 (1996). [CrossRef]
  15. B. Kippelen, F. Meyers, N. Peyghambarian, S. Marder, “Chromophore design for photorefractive applications,” J. Am. Chem. Soc. 119, 4559–4560 (1997). [CrossRef]
  16. H. J. Bolink, V. V. Krasnikov, G. G. Malliaras, G. Hadziioannou, “Effect of plasticization on the performance of photorefractive polymers,” J. Phys. Chem. 100, 16356–16360 (1996). [CrossRef]
  17. Further information will be available in a paper entitled “Influence of the glass-transition temperature and the chromophore content on the steady-state performance of PVK-based photorefractive polymers,” submitted to Adv. Mat. by R. Bittner, K. Meerholz.
  18. S. M. Silence, J. C. Scott, E. J. Ginsburg, P. K. Jenkner, R. D. Miller, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Poly(siloxane)-based high-mobility photorefractive polymers,” J. Opt. Soc. Am. B 10, 2306–2312 (1993);S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, R. J. Twieg, “Photorefractive polymers based on dual-function dopands,” J. Phys. Chem. 99, 4096–4105 (1995). [CrossRef]
  19. S. M. Silence, R. J. Twieg, G. C. Bjorklund, W. E. Moerner, “Quasinondestructive readout in a photorefractive polymer,” Phys. Rev. Lett. 73, 2047–2050 (1994). [CrossRef] [PubMed]
  20. K. Meerholz, R. Bittner, C. Bräuchle, B. L. Volodin, Sandalphon, B. Kippelen, N. Peyghambarian, “Improved long-term stability of high performance photorefractive polymer devices,” in Organic Photorefractive Materials and Xerographic Photoreceptors, S. Ducharme, J. W. Stasiak, eds., Proc. SPIE2850, 102–107 (1996). [CrossRef]
  21. H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).
  22. C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990);J. S. Schildkraut, “Determination of the electro-optical coefficient of a poled polymer film,” Appl. Opt. 29, 2839–2941 (1990). [CrossRef] [PubMed]
  23. Sandalphon, B. Kippelen, K. Meerholz, N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites,” Appl. Opt. 35, 2346–2354 (1996). [CrossRef]
  24. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals. Part I. Steady state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  25. J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991). [CrossRef]
  26. M. G. Kuzyk, J. E. Sohn, C. W. Dirk, “Mechanisms of quadratic electro-optic modulation of dye-doped polymer systems,” J. Opt. Soc. Am. B 7, 842–848 (1990). [CrossRef]
  27. H.-J. Winkelhahn, Th. K. Servay, D. Neher, “A novel concept for modelling the time-temperature dependence of polar order relaxation in nonlinear optical active polymers,” Ber. Bunsenges. Phys. Chem. 100, 123–131 (1996). [CrossRef]
  28. C. Burger, “Transformation von Relaxationsfunktinonen,” Ph.D. thesis (University of Marburg, Germany, 1994).
  29. G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, G. Hadziiaonnou, “Transient behaviour of photorefractive gratings in a polymer,” Appl. Phys. Lett. 67, 455–457 (1995);G. G. Malliaras, H. Angerman, V. V. Krasnikov, G. Ten Brinke, G. Hadziiaonnou, “The influence of disorder on the space charge field formation in photorefractive polymers,” J. Phys. D 29, 2045–2048 (1996). [CrossRef]
  30. M. C. J. M. Donckers, S. M. Silence, C. A. Walsh, F. Hache, D. M. Burland, W. E. Moerner, R. J. Twieg, “Net two-beam coupling gain in a polymeric photorefractive material,” Opt. Lett. 18, 1044–1046 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited