OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 37, Iss. 14 — May. 10, 1998
  • pp: 2879–2885

Two-bounce optical arbitrary permutation network

Marc P. Christensen and Michael W. Haney  »View Author Affiliations


Applied Optics, Vol. 37, Issue 14, pp. 2879-2885 (1998)
http://dx.doi.org/10.1364/AO.37.002879


View Full Text Article

Enhanced HTML    Acrobat PDF (924 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The two-bounce free-space arbitrary interconnection architecture is presented. It results from a series of three-dimensional topological transformations to the Benes network, the minimum rearrangeable nonblocking network. Although functionally equivalent to the Benes network, it requires only two stages of global (spanning multiple chips) optical interconnections. The remaining stages of the modified Benes interconnection network are local and are implemented electronically (on individual chips). The two-bounce network is optimal in the sense that it retains the Benes minimum number of electronic switching resources yet also minimizes the number of optical links needed for global interconnection. Despite the use of higher-order k-shuffle (k > 2) global optical interconnects, the number of 2 × 2 switching elements is identical to the two-shuffle Benes network: there is no need for k × k crossbar switches for local interconnection at each stage. An experimental validation of the two-bounce architecture is presented.

© 1998 Optical Society of America

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

History
Original Manuscript: August 28, 1997
Revised Manuscript: January 16, 1998
Published: May 10, 1998

Citation
Marc P. Christensen and Michael W. Haney, "Two-bounce optical arbitrary permutation network," Appl. Opt. 37, 2879-2885 (1998)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-14-2879


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. W. Haney, M. P. Christensen, “Fundamental geometric advantages of free-space optical interconnects,” in Proceedings of the Third International Conference on MPPOI, A. Gottlieb, Y. Li, E. Schenfeld, eds. (IEEE Computer Society, New York, 1996), pp. 16–23.
  2. M. W. Haney, M. P. Christensen, “Performance scaling comparison for free-space optical and electrical interconnection approaches,” Appl. Opt. 37, 2886–2894 (1998). [CrossRef]
  3. A. W. Lohmann, “What classical optics can do for the digital optical computer,” Appl. Opt. 25, 1543–1549 (1986). [CrossRef] [PubMed]
  4. G. Eichmann, Y. Li, “Compact optical generalized perfect shuffle,” Appl. Opt. 26, 1167–1169 (1987). [CrossRef]
  5. S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D optical multistage interconnection networks,” in Digital Optical Computing, R. Arrathoon, ed., Proc. SPIE752, 209–216 (1987). [CrossRef]
  6. K.-H. Brenner, A. Huang, “Optical implementations of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988). [CrossRef] [PubMed]
  7. C. W. Stirk, R. A. Athale, M. W. Haney, “Folded perfect shuffle optical processor,” Appl. Opt. 27, 202–203 (1988). [CrossRef] [PubMed]
  8. A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” in Optical Computing ’88, P. Chaval, J. W. Goodman, G. Roblin, eds., Proc. SPIE963, 270–282 (1988). [CrossRef]
  9. G. C. Marsden, P. J. Marchand, P. Harvey, S. C. Esener, “Optical transpose interconnection system architecture,” Opt. Lett. 18, 1083–1085 (1993). [CrossRef] [PubMed]
  10. R. R. Michael, M. P. Christensen, M. W. Haney, “Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding banyan network,” J. Lightwave Technol. 14, 1970–1978 (1996). [CrossRef]
  11. H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans Comput. C-20, 81–89 (1971). [CrossRef]
  12. M. P. Christensen, M. W. Haney, “Two-bounce free-space arbitrary interconnection architecture,” in Proceedings of the Fourth International Conference on MPPOI, J. Goodman, S. Hinton, T. Pinkston, E. Schenfeld, eds. (IEEE Computer Society, New York, 1997), pp. 61–67.
  13. M. W. Haney, M. P. Christensen, K. Raj, P. Milojkovic, “Packaging advantages of macro-optical free-space interconnections over micro-optical and electrical interconnections,” in Advances in Electronic Packaging 1997, Vol. 19-1 of EEP Series, E. Suhir, M. Shiratori, Y. C. Lee, eds. (American Society of Mechanical Engineers, New York, 1997), pp. 811–817.
  14. M. W. Haney, “Self-similar grid patterns in free-space shuffle/exchange networks,” Opt. Lett. 18, 2047–2049 (1993). [CrossRef] [PubMed]
  15. M. W. Haney, “Pipelined optoelectronic free-space permutation network,” Opt. Lett. 17, 283–285 (1992). [CrossRef]
  16. M. W. Haney, M. P. Christensen, “Sliding-banyan network performance analysis,” Appl. Opt. 36, 2334–2342 (1997). [CrossRef] [PubMed]
  17. F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes (Morgan-Kaufmann, San Mateo, Calif., 1992).
  18. A. V. Krishnamoorthy, P. J. Marchand, F. E. Kiamilev, S. C. Esener, “Grain sized considerations for optoelectronic multistage interconnection networks,” Appl. Opt. 31, 5480–5507 (1992). [CrossRef] [PubMed]
  19. M. W. Haney, M. P. Christensen, “Optical freespace sliding tandem banyan architecture for self-routing switching networks,” in Digest of the International Conference on Optical Computing (Heriot-Watt U., Edinburgh, UK, 1994), pp. 249–250.
  20. M. W. Haney, M. P. Christensen, “Optoelectronic sliding banyan network,” U.S. patent5,467,211 (14November1995).
  21. W. L. Hendrich, P. J. Marchand, F. B. McCormick, I. Cokgur, S. C. Esener, “Optical transpose interconnection system: system design and component development,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 283–285.
  22. C. P. Kruskal, M. Snir, “The performance of multistage interconnection networks for multiprocessors,” IEEE Trans. Comput. C-32, 1091–1098 (1983). [CrossRef]
  23. M. W. Haney, M. P. Christensen, “Smart pixel based Viterbi decoder,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 99–101.
  24. G. D. Forney, “The Viterbi algorithm,” Proc. IEEE 61, 268–278 (1973). [CrossRef]
  25. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Eckman, P. Chandramani, R. Rozier, F. Kiamilev, Y. Liu, M. Hibbs-Brenner, J. Nohava, E. Kalweit, S. Bounnak, T. Marta, B. Walterson, “FAST-Net optical interconnection prototype demonstration program,” in Optoelectronic Interconnects V , R. T. Chen, J. P. Bristow , eds., Proc. SPIE (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited